

Oracle® Multimedia
User's Guide

11g Release 2 (11.2)

E10777-03

August 2010

Oracle Multimedia enables Oracle Database to store, manage,
and retrieve images, audio, video, DICOM format medical
images and other objects, or other heterogeneous media data
in an integrated fashion with other enterprise information.
Oracle Multimedia extends Oracle Database reliability,
availability, and data management to multimedia content in
traditional, Internet, electronic commerce, medical, financial,
and other media-rich applications.

Oracle Multimedia User's Guide, 11g Release 2 (11.2)

E10777-03

Copyright © 1999, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sue Pelski

Contributors: Robert Abbott, Melliyal Annamalai, Fengting Chen, Dongbai Guo, Dong Lin, Susan Mavris,
Valarie Moore, David Noblet, James Steiner, Yingmei Sun, Manjari Yalavarthy, Jie Zhang

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents .. xii
Conventions ... xiii

What’s New in Oracle Multimedia? .. xv

New Features for Release 11.2... xv
Status of ORDImage Support for DICOM in Release 11.2 .. xvi

1 Introduction to Oracle Multimedia

1.1 Oracle Multimedia Architecture... 1-2
1.2 Object Relational Technology ... 1-3
1.3 Oracle Multimedia Capabilities .. 1-4
1.4 Audio Concepts... 1-6
1.4.1 Digitized Audio .. 1-6
1.4.2 Audio Components ... 1-6
1.5 ORDDoc or Heterogeneous Media Data Concepts.. 1-7
1.5.1 Digitized Heterogeneous Media Data .. 1-7
1.5.2 Heterogeneous Media Data Components .. 1-7
1.6 Image Concepts ... 1-8
1.6.1 Digitized Images .. 1-8
1.6.2 Image Components.. 1-8
1.6.3 Metadata in Images ... 1-9
1.6.4 Medical Imaging .. 1-9
1.6.5 Metadata Extraction ... 1-10
1.6.6 Image Processing .. 1-11
1.6.7 SQL/MM Still Image Standard Support ... 1-11
1.7 Video Concepts ... 1-11
1.7.1 Digitized Video .. 1-11
1.7.2 Video Components ... 1-12
1.8 Loading Multimedia Data .. 1-12
1.9 Multimedia Storage and Querying.. 1-13
1.9.1 Storing Multimedia Data ... 1-13
1.9.2 Querying Multimedia Data ... 1-14

iv

1.10 Accessing Multimedia Data.. 1-14
1.10.1 Oracle Multimedia Java API ... 1-15
1.10.2 Streaming Content from Oracle Database .. 1-15
1.10.3 Support for Web Technologies ... 1-16
1.10.4 Oracle Multimedia Support for Java Advanced Imaging (JAI) 1-17
1.11 Extending Oracle Multimedia.. 1-18

2 Oracle Multimedia Application Development

2.1 Overview of the Application Development Environment ... 2-2
2.1.1 Java Class Libraries and Other Packages and Interfaces ... 2-2
2.1.2 Integration With PL/SQL Gateway and PL/SQL Web Toolkit 2-4
2.1.3 Integration With Components in Other Oracle Development Tools 2-4
2.1.4 Integration With Third-Party Streaming Media Servers ... 2-5
2.2 Developing PL/SQL Client Applications Using the PL/SQL API...................................... 2-6
2.2.1 Setting Up Your Environment for PL/SQL ... 2-7
2.2.2 Media Query in PL/SQL .. 2-7
2.2.3 Media Download in PL/SQL... 2-8
2.2.4 Media Upload in PL/SQL .. 2-8
2.2.5 Handling Oracle Multimedia Exceptions in PL/SQL .. 2-9
2.2.5.1 Handling the Setting of Properties for Unknown Image Formats in PL/SQL. 2-10
2.2.5.2 Handling Image Processing for Unknown Image Formats in PL/SQL 2-10
2.3 Developing PL/SQL Web Applications ... 2-11
2.3.1 Using the PL/SQL Gateway and PL/SQL Web Toolkit... 2-12
2.4 Developing Java Client Applications Using JDBC.. 2-15
2.4.1 Setting Up Your Environment for Java.. 2-16
2.4.2 Media Retrieval in Java.. 2-18
2.4.3 Media Upload in Java... 2-19
2.4.4 Handling Oracle Multimedia Exceptions in Java .. 2-21
2.4.4.1 Handling the Setting of Properties for Unknown Image Formats in Java 2-22
2.4.4.2 Handling Image Processing for Unknown Image Formats in Java.................... 2-23
2.5 Developing Java-Based Web Applications... 2-23
2.5.1 Media Retrieval in Java-Based Web Applications ... 2-24
2.5.1.1 Media URL.. 2-24
2.5.1.2 Media Delivery Component .. 2-24
2.5.2 Media Upload in Java-Based Web Applications.. 2-25

3 Oracle Multimedia Photo Album Sample Applications

3.1 Oracle Multimedia PL/SQL Photo Album Sample Application ... 3-2
3.1.1 Running the PL/SQL Photo Album Application ... 3-4
3.1.2 Description of the PL/SQL Photo Album Application.. 3-5
3.1.2.1 Browsing the Photo Album... 3-7
3.1.2.2 Adding Images to the Photo Album... 3-10
3.1.2.3 Searching for Images by Keyword or Phrase ... 3-15
3.1.2.4 Viewing Full-Size Images... 3-15
3.1.2.5 Examining Image Metadata ... 3-17
3.1.2.6 Writing New XMP Metadata to Images... 3-18
3.1.2.7 Searching for Images That Contain Specific Metadata Attributes 3-21

v

3.2 Oracle Multimedia Java Servlet Photo Album Sample Application 3-23
3.2.1 Running the Java Servlet Photo Album Application... 3-24
3.2.2 Description of the Java Servlet Photo Album Application... 3-25
3.3 Oracle Multimedia JSP Photo Album Sample Application ... 3-32
3.3.1 Running the JSP Photo Album Application.. 3-32
3.3.2 Description of the JSP Photo Album Application.. 3-33

4 Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway

4.1 Running the Code Wizard Sample Application... 4-2
4.2 Description of the Code Wizard Sample Application ... 4-2
4.2.1 Creating a New DAD or Choosing an Existing DAD .. 4-3
4.2.2 Authorizing a DAD ... 4-4
4.2.3 Creating and Testing Media Upload and Retrieval Procedures................................... 4-6
4.2.4 Creating a Media Upload Procedure .. 4-7
4.2.5 Creating a Media Retrieval Procedure .. 4-13
4.2.6 Using the PL/SQL Gateway Document Table ... 4-16
4.2.7 How Time Zone Information Is Used to Support Browser Caching 4-17
4.3 Sample Session 1: Using Images .. 4-18
4.4 Sample Session 2: Using Multiple Object Columns .. 4-27
4.5 Known Restrictions of the Oracle Multimedia Code Wizard.. 4-37

5 Oracle Multimedia Java API Sample Application

5.1 Running the Oracle Multimedia Java API Sample Application .. 5-2
5.2 Description of the Oracle Multimedia Java API Sample Application................................. 5-2
5.2.1 Operations in the IMProductDialog Class ... 5-5
5.2.2 Operations in the IMImagePanel Class .. 5-8
5.2.3 Operations in the IMGetMetadataDialog Class ... 5-11
5.2.4 Operations in the IMPutMetadataDialog Class ... 5-12
5.2.5 Operations in the IMVideoPanel Class.. 5-13
5.2.6 Operations in the IMAudioPanel Class... 5-16
5.2.7 Operations in the IMDocPanel Class ... 5-18
5.2.8 Operations in the IMLoadFile Class .. 5-21
5.2.9 Operations in the IMUtil Class ... 5-24

6 Working with Metadata in Oracle Multimedia Images

6.1 Metadata Concepts ... 6-1
6.2 Oracle Multimedia Image Metadata Concepts... 6-2
6.3 Image File Formats ... 6-2
6.4 Image Metadata Formats ... 6-2
6.4.1 EXIF.. 6-2
6.4.2 IPTC–IIM... 6-2
6.4.3 XMP ... 6-3
6.5 Representing Metadata Outside Images ... 6-3
6.6 Oracle Multimedia Image Metadata Examples .. 6-3
6.6.1 Creating a Table for Metadata Storage ... 6-4
6.6.2 Extracting Image Metadata .. 6-4

vi

6.6.3 Embedding Image Metadata.. 6-5
6.7 Metadata References... 6-7

7 Extending Oracle Multimedia

7.1 Supporting Other External Sources.. 7-1
7.1.1 Packages or PL/SQL Plug-ins.. 7-2
7.1.1.1 ORDPLUGINS.ORDX_FILE_SOURCE Package ... 7-2
7.1.1.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package ... 7-4
7.1.1.3 Extending Oracle Multimedia to Support a New Data Source.............................. 7-5
7.2 Supporting Other Media Data Formats... 7-8
7.2.1 Supporting Other ORDAudio Data Formats... 7-8
7.2.1.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package.. 7-8
7.2.1.2 Extending Oracle Multimedia to Support a New Audio Data Format 7-9
7.2.2 Supporting Other ORDDoc Data Formats .. 7-11
7.2.2.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package ... 7-11
7.2.2.2 Extending Oracle Multimedia to Support a New ORDDoc Data Format 7-11
7.2.3 Supporting Other Video Data Formats ... 7-12
7.2.3.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package ... 7-12
7.2.3.2 Extending Oracle Multimedia to Support a New Video Data Format 7-14
7.2.4 Supporting Other Image Data Formats ... 7-15
7.3 Extending Oracle Multimedia with a New Type .. 7-15
7.4 Supporting Media Data Processing... 7-16
7.4.1 Supporting Audio Data Processing ... 7-16
7.4.2 Supporting Video Data Processing .. 7-17

8 Oracle Multimedia Tuning Tips for DBAs

8.1 Understanding the Performance Profile of Oracle Multimedia Operations 8-1
8.2 Choosing LOB Storage Parameters for Oracle Multimedia Objects.................................... 8-3
8.2.1 SecureFile LOBs and BasicFile LOBs .. 8-3
8.2.2 TABLESPACE .. 8-3
8.2.3 CACHE, NOCACHE, and CACHE READS.. 8-3
8.2.4 LOGGING and NOLOGGING .. 8-4
8.2.5 CHUNK... 8-4
8.2.6 Example of Setting LOB Storage Options .. 8-5
8.3 Setting Database Initialization Parameters ... 8-6

9 Oracle Multimedia Examples

9.1 Audio Data Examples... 9-1
9.1.1 Using Audio Types with Object Views .. 9-2
9.1.2 Scripts for Populating an ORDAudio Object with BLOB Data..................................... 9-3
9.1.2.1 Create an Audio Data Load Directory... 9-4
9.1.2.2 Create and Populate the soundtable Table ... 9-4
9.1.2.3 Create the audio_table Table .. 9-6
9.1.2.4 Load the Audio Data.. 9-6
9.1.2.5 Copy the BLOB Data to the ORDAudio Object ... 9-7
9.1.2.6 Show the Properties of the Loaded Audio Data .. 9-7

vii

9.1.2.7 Automate the ORDAudio Examples ... 9-9
9.1.2.8 Clean Up the ORDAudio Examples .. 9-9
9.2 Media Data Examples.. 9-10
9.2.1 Scripts for Populating an ORDDoc Object from a File Data Source 9-10
9.2.1.1 Create a Media Data Load Directory.. 9-11
9.2.1.2 Create the doc_table Table ... 9-11
9.2.1.3 Load the Media Data... 9-11
9.2.1.4 Read the Media Data from the BLOB ... 9-12
9.2.1.5 Show the Properties of the Loaded Media Data ... 9-13
9.2.1.6 Automate the ORDDoc Examples... 9-14
9.2.1.7 Clean Up the ORDDoc Examples.. 9-15
9.3 Image Data Examples.. 9-15
9.3.1 Scripts for Populating an ORDImage Object from a File Data Source...................... 9-16
9.3.1.1 Create an Image Data Load Directory.. 9-16
9.3.1.2 Create the image_table Table... 9-17
9.3.1.3 Load the Image Data ... 9-17
9.3.1.4 Read the Image Data from the BLOB ... 9-18
9.3.1.5 Show the Properties of the Loaded Image Data ... 9-19
9.3.1.6 Automate the ORDImage Examples... 9-20
9.3.1.7 Clean Up the ORDImage Examples.. 9-21
9.3.2 Loading an Image Table from an HTTP Data Source ... 9-21
9.3.3 Addressing Globalization Support Issues... 9-22
9.4 Video Data Examples .. 9-22

A Oracle Multimedia Sample Applications

A.1 Oracle Multimedia ORDImage OCI C Sample Application.. A-1
A.2 Oracle Multimedia PL/SQL Sample Applications ... A-2
A.3 Oracle Multimedia Java Sample Applications... A-2
A.4 Other Oracle Multimedia Sample Applications.. A-3

B Managing Oracle Multimedia Installations

B.1 Oracle Multimedia Installed Users and Privileges ... B-1
B.2 Installing and Configuring Oracle Multimedia... B-2
B.2.1 Preinstallation Steps ... B-3
B.2.2 Installation and Configuration Steps ... B-3
B.3 Verifying an Installed Version of Oracle Multimedia .. B-4
B.4 Upgrading an Installed Version of Oracle Multimedia.. B-5
B.5 Downgrading an Installed Version of Oracle Multimedia .. B-5
B.6 Removing Oracle Multimedia.. B-5

Glossary

Index

viii

List of Examples

2–1 Image Query (Height, Width, and MimeType Attributes)... 2-7
2–2 Audio Query (MimeType Attribute).. 2-8
2–3 Video Query (MimeType Attribute) .. 2-8
2–4 URL Format to Invoke mod_plsql in a Web Browser .. 2-13
2–5 URL Format to Invoke mod_plsql for the Photo Album Application 2-14
3–1 Procedure view_album .. 3-8
3–2 Procedure print_album .. 3-9
3–3 Procedure print_image_link.. 3-9
3–4 Procedure deliver_media.. 3-10
3–5 Procedure print_upload_form ... 3-11
3–6 Procedure insert_new_photo ... 3-12
3–7 Procedure view_entry ... 3-16
3–8 Procedure view_metadata .. 3-17
3–9 Procedure print_metadata .. 3-18
3–10 Procedure write_metadata ... 3-19
3–11 Procedure search_metadata ... 3-22
4–1 Image Upload Procedure Generated in Sample Session 1... 4-21
4–2 Image Retrieval Procedure Generated in Sample Session 1 .. 4-24
4–3 Multiple Media Upload Procedure Generated in Sample Session 2 4-30
4–4 Media Retrieval Procedure Generated in Sample Session 2.. 4-36
7–1 Package Body for Extending Support to a New Data Source .. 7-5
7–2 Package Body for Extending Support to a New Audio Data Format 7-10
7–3 Package Body for Extending Support to a New ORDDoc Data Format.......................... 7-12
7–4 Package Body for Extending Support to a New Video Data Format 7-14
7–5 Extend Oracle Multimedia ORDImage with a New Object Type..................................... 7-15
9–1 Define a Relational Table Containing No ORDAudio Object .. 9-2
9–2 Define an Object View Containing an ORDAudio Object and Relational Columns 9-2
9–3 create_mediadir.sql Script ... 9-4
9–4 create_soundtable.sql Script .. 9-5
9–5 create_audtable.sql Script .. 9-6
9–6 import_aud.sql Script ... 9-6
9–7 copy_audblob.sql Script... 9-7
9–8 showprop_aud.sql Script ... 9-7
9–9 setup_audsample.sql Script... 9-9
9–10 cleanup_audsample.sql Script .. 9-9
9–11 create_doctable.sql Script.. 9-11
9–12 import_doc.sql Script .. 9-12
9–13 read_doc.sql Script... 9-12
9–14 showprop_doc.sql Script... 9-13
9–15 setup_docsample.sql Script .. 9-14
9–16 cleanup_docsample.sql Script .. 9-15
9–17 create_imgtable.sql Script ... 9-17
9–18 import_img.sql Script .. 9-17
9–19 read_image.sql Script .. 9-18
9–20 showprop_img.sql Script .. 9-19
9–21 setup_imgsample.sql Script.. 9-20
9–22 cleanup_imgsample.sql Script ... 9-21
9–23 Import Image Data from an HTTP Data Source.. 9-21
9–24 Address a Globalization Support Issue .. 9-22

ix

List of Figures

1–1 Oracle Multimedia Architecture... 1-3
2–1 Components of the PL/SQL Development Environment ... 2-13
3–1 View album Page with Uploaded Images... 3-7
3–2 Completed Upload photo Page ... 3-11
3–3 Search album Page Showing Results .. 3-15
3–4 View entry Page with a Full-Size Image... 3-16
3–5 View metadata Page with Metadata for an Uploaded Image ... 3-17
3–6 Completed Write XMP metadata Page with XMP Metadata for an Uploaded Image .. 3-19
3–7 Completed Search metadata Page for an Uploaded Image... 3-22
4–1 Main Menu for the Code Wizard ... 4-4
4–2 Authorize the SCOTTCW DAD.. 4-5
4–3 List of Authorized DADs... 4-6
4–4 Use the SCOTTCW DAD ... 4-7
4–5 Create a Media Upload Procedure ... 4-8
4–6 Media Upload Step 1: Select Database Table and Procedure Type 4-8
4–7 Media Upload Step 2: Select PL/SQL Gateway Document Upload Table......................... 4-9
4–8 Media Upload Step 3: Select Data Access and Media Column(s)..................................... 4-10
4–9 Media Upload Step 4: Select Additional Columns and Procedure Name....................... 4-11
4–10 Media Upload Step 5: Review Selected Options ... 4-12
4–11 Compiled Upload Procedure with Success Message.. 4-12
4–12 Template Upload Form for the Code Wizard.. 4-13
4–13 Create a Media Retrieval Procedure ... 4-13
4–14 Media Retrieval Step 1: Select Database Table and Procedure Type 4-14
4–15 Media Retrieval Step 2: Select Media Column and Key Column 4-14
4–16 Media Retrieval Step 3: Select Procedure Name and Parameter Name 4-15
4–17 Media Retrieval Step 4: Review Selected Options .. 4-15
4–18 Compiled Retrieval Procedure with Success Message... 4-16

x

List of Tables

2–1 Java Archive Files for Oracle Multimedia ... 2-16
3–1 PL/SQL Photo Album Sample Application Overview.. 3-5
5–1 Java Class Files in the Compiled Sample Application.. 5-2
5–2 Additional Java Class Files in the Sample Application.. 5-4
7–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package 7-3
7–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package 7-5
7–3 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package 7-9
7–4 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package............... 7-11
7–5 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package 7-13
8–1 Performance Profile For All Multimedia Types .. 8-2
8–2 Performance Profile For ORDImage Methods... 8-2
8–3 Performance Profile For ORDDicom Methods.. 8-2
8–4 Performance Profile For ORDAudio and ORDVideo Methods .. 8-3
9–1 Audio Scripts .. 9-3
9–2 Media Scripts ... 9-10
9–3 Image Scripts ... 9-16
A–1 Oracle Multimedia Sample Applications in Oracle Database Examples Media A-1
B–1 Installed Database Users.. B-1
B–2 User Accounts and Default Passwords.. B-2

xi

Preface

This guide describes how to use Oracle Multimedia, which ships with Oracle
Database. It describes the management and integration of audio, image, and video, or
other heterogeneous media data with other Oracle tools and software, and with
third-party tools and software.

In Oracle Database 11g Release 1 (11.1), the name Oracle interMedia was changed to
Oracle Multimedia. The feature remains the same, only the name has changed.
References to Oracle interMedia were replaced with Oracle Multimedia although,
some references to Oracle interMedia or interMedia might still appear in graphical user
interfaces, code examples, and related documents in the Documentation Library for
Oracle Database 11g Release 2 (11.2).

The sample code in this guide might not match the code shipped with Oracle Database
Examples media. To run examples that are shipped with Oracle Database Examples
media on your system, use the files provided with Oracle Database Examples media.
Do not attempt to compile and run the code in this guide.

See Oracle Database New Features Guide for information about Oracle Database and the
features and options that are available to you.

Audience
This guide is for application developers and database administrators who are
interested in storing, retrieving, and manipulating audio, image, video, and
heterogeneous media data in a database, including developers of audio,
heterogeneous media data, image, and video specialization options. After
familiarizing yourself with the concepts presented in this guide, consult Oracle
Multimedia Reference for API information.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

xii

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents

For more information about using Oracle Multimedia in a development environment,
see the following documents in the Oracle Database Online Documentation Library:

■ Oracle Multimedia Reference

■ Oracle Multimedia DICOM Developer’s Guide

■ Oracle Call Interface Programmer's Guide

■ Oracle Database Advanced Application Developer's Guide

■ Oracle Database SecureFiles and Large Objects Developer's Guide

■ Oracle Database Concepts

■ Oracle Database PL/SQL Language Reference

■ Oracle Database Java Developer's Guide

■ Oracle Database Error Messages

For more information about using JDBC, see Oracle Database JDBC Developer's Guide.

For more information about using XML, see Oracle XML DB Developer's Guide.

For reference information about Oracle Multimedia Java classes in Javadoc format, see
the following Oracle API documentation (also known as Javadoc) in the Oracle
Database Online Documentation Library:

■ Oracle Multimedia Java API Reference

■ Oracle Multimedia Servlets and JSP Java API Reference

Note: For information added after the release of this guide, see the
online README.txt file under your <ORACLE_HOME> directory.
Depending on your operating system, this file may be in

<ORACLE_HOME>/ord/im/admin/README.txt

See your operating system-specific installation guide for more
information.

xiii

■ Oracle Multimedia DICOM Java API Reference

■ Oracle Multimedia Mid-Tier Java API Reference

For information about using the Oracle Multimedia JSP Tag Library, see Oracle
Multimedia JSP Tag Library Guide in the Oracle Multimedia Software section of the
Oracle Technology Network Web site.

For more information about Java, including information about Java Advanced
Imaging (JAI), see the API documentation provided by Oracle.

Many of the examples in this guide use the sample schemas. See Oracle Database Sample
Schemas for information about how these schemas were created and how you can use
them.

Conventions
Although Boolean is a proper noun, it is presented as boolean in this guide when its
use in Java code requires case-sensitivity.

The following text conventions are also used in this guide:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xiv

xv

What’s New in Oracle Multimedia?

This document summarizes new features, enhancements, APIs, and Oracle Database
support introduced with Oracle Multimedia in the current release. It also describes a
feature that is no longer being enhanced, beginning with the current release.

New Features for Release 11.2
Oracle Database 11g Release 2 (11.2) added new features for Oracle Multimedia, and
new enhancements for Oracle Multimedia DICOM. The following subsections list
these features and enhancements.

See Oracle Multimedia Reference for more information about the Oracle Multimedia
features. See Oracle Multimedia DICOM Developer's Guide for more information about
the DICOM enhancements.

Oracle Multimedia Features
The following new features for Oracle Multimedia are described in Oracle Multimedia
Reference:

■ New constructor functions for BLOBs and other sources, for these object types:

– ORDAudio

– ORDDoc

– ORDImage

– ORDVideo

■ Support for image watermarking

■ New image processing operators:

– nometadata

– sharpen

– transparencyFillColor

■ Support for the CMYK content format

See Also:

Oracle Multimedia Mid-Tier Java API Reference for reference information
about the new mid-tier Java API

Oracle Multimedia DICOM Java API Reference for reference information
about the Oracle Multimedia DICOM Java API

xvi

Oracle Multimedia DICOM Enhancements
The following enhancements for Oracle Multimedia DICOM are described in Oracle
Multimedia DICOM Developer's Guide:

■ Recursive calls within constraint definitions

■ Limiting the list of DICOM attributes for extraction

■ Oracle Multimedia Mid-Tier Java API

■ DICOM value locator type syntax

■ Wildcard character syntax

■ New preference parameters to define run-time behavior:

– BINARY_SKIP_INVALID_ATTR

– MANDATE_ATTR_TAGS_IN_STL

– MAX_RECURSION_DEPTH

– SPECIFIC_CHARACTER_SET

– SQ_WRITE_LEN

■ DICOM to AVI conversion

■ DEFLATE compression format

■ RLE compression format

■ YBR photometric interpretation

■ Encoding of multibit monochrome raw content

■ Oracle Data Pump Utilities support for the DICOM data model repository

Status of ORDImage Support for DICOM in Release 11.2
Beginning with Oracle Database 11g, Release 2 (11.2), the DICOM support in
ORDImage objects that was introduced in Oracle Database 10g, Release 2 (10.2) was
not enhanced. The DICOM support in ORDImage objects is still available in Release
11.2, but Oracle recommends taking the following actions for medical imaging
applications.

■ For new applications:

Use the new DICOM support that was introduced in Oracle Database 11g, Release
1 (11.1).

■ For existing applications that use the DICOM support in ORDImage objects:

Migrate to the new DICOM support that was introduced in Release 11.1.

See Section 1.6.4 for more information about the status of this feature and its
enhancements.

See Also:

Oracle Multimedia DICOM Developer’s Guide for complete information
about Oracle Multimedia DICOM features and enhancements

1

Introduction to Oracle Multimedia 1-1

1 Introduction to Oracle Multimedia

Oracle Multimedia (formerly Oracle interMedia) enables Oracle Database to store,
manage, and retrieve images, DICOM format medical images and other objects, audio,
video, or other heterogeneous media data in an integrated fashion with other
enterprise information.

Oracle Multimedia extends Oracle Database reliability, availability, and data
management to multimedia content in traditional, medical, Internet, electronic
commerce, and media-rich applications. Oracle Multimedia does not control media
capture or output devices; this function is left to application software.

Oracle Multimedia provides these services and support:

■ Image services for the storage, retrieval, metadata extraction, and processing of
two-dimensional, static, bit-mapped images. Images are stored efficiently using
popular compression schemes in industry-standard image formats for desktop
publishing.

■ Digital Imaging and Communications in Medicine (DICOM) support for the
storage, retrieval, metadata extraction, processing, writing, conformance
validation, and making anonymous of medical images and other DICOM content.

■ Audio and video services for the storage, retrieval, and metadata extraction of
popular audio and video file formats.

■ Media content services to Oracle JDeveloper, Oracle Portal, and Oracle partners.

This chapter includes these sections:

■ Oracle Multimedia Architecture on page 1-2

■ Object Relational Technology on page 1-3

■ Oracle Multimedia Capabilities on page 1-4

■ Audio Concepts on page 1-6

■ ORDDoc or Heterogeneous Media Data Concepts on page 1-7

■ Image Concepts on page 1-8

■ Video Concepts on page 1-11

■ Loading Multimedia Data on page 1-12

■ Multimedia Storage and Querying on page 1-13

■ Accessing Multimedia Data on page 1-14

■ Extending Oracle Multimedia on page 1-18

Oracle Multimedia Architecture

1-2 Oracle Multimedia User's Guide

1.1 Oracle Multimedia Architecture
Oracle Multimedia is a single, integrated feature that extends the database by storing,
managing, and retrieving image, audio, and video data, and by supporting Web
technologies for multimedia data.

The Oracle Multimedia architecture defines the framework (see Figure 1–1) through
which media-rich content is supported in the database, along with traditional data.
This content can then be securely shared across multiple applications written with
popular languages and tools, easily managed and administered by relational database
management and administration technologies, and offered on a scalable database that
supports thousands of users.

Figure 1–1 illustrates the Oracle Multimedia architecture from a three-tier perspective:

1. Database tier (Oracle Database)

2. Middle tier (Oracle Fusion Middleware)

3. Client tier (Thin Client and Thick Clients)

In the database tier, using Oracle Multimedia, Oracle Database holds rich content in
tables along with traditional data. Through a database-embedded JVM, a server-side
media parser and an image processor are supported. The media parser has
object-oriented and relational interfaces, supports format and application metadata
parsing, and can be extended to support additional formats. The image processor
includes JAI. It also provides image processing for operations such as producing
thumbnail-size images, converting image formats, and image watermarking.

Using Oracle Multimedia methods, import and export operations between the
database and operating system files (external file storage) are possible. Oracle
Multimedia also supports special delivery types of servers, such as streaming content
from a database. Using the Oracle Multimedia Plug-ins for RealNetworks or Windows
Media Services, the Helix Universal Server or Windows Media Streaming Server can
stream multimedia data to a client directly out of the database using Real-Time
Streaming Protocol (RTSP). In addition, third-party media processors such as speech
recognition engines can run external to the database to process media stored in the
database and return results to the database.

In the middle tier, Oracle Fusion Middleware provides access to Oracle Multimedia
through Oracle Multimedia Java classes, which enable Java applications on any tier
(client, application server, or database) to access, manipulate, and modify audio,
image, and video data stored in a database. In addition, Oracle Multimedia Java
classes facilitate the upload and retrieval of multimedia data stored in a database using
the Oracle Multimedia OrdAudio, OrdDoc, OrdImage, and OrdVideo object types.
And, Oracle Multimedia Java classes can access data stored in the Oracle Multimedia
objects or BLOBs or BFILEs directly.

Developers can also use Oracle JDeveloper and Oracle Multimedia to build media-rich
Java applications quickly and easily using the Oracle Multimedia/ADF Business
Components integration package. Oracle Multimedia rich content can also be easily

See Also:

■ Oracle Multimedia Reference for detailed information about Oracle
Multimedia APIs and their components

■ See Oracle Multimedia DICOM Developer's Guide for more
information about Oracle Multimedia DICOM support

Object Relational Technology

Introduction to Oracle Multimedia 1-3

and transparently incorporated into Oracle Portal forms and reports, which can then
be published as portlets.

SQL developers familiar with the database can develop Web applications that use
Oracle Fusion Middleware exclusively, and Oracle Database using the PL/SQL
development environment. The steps include using the PL/SQL Gateway (mod_plsql)
feature of the Oracle HTTP Server and the PL/SQL Web Toolkit. Web application
developers can write PL/SQL servlets and PL/SQL server pages (PSP) that invoke
PL/SQL procedures stored in the database through an Oracle Net connection and OCI.

In the client tier, the ability to perform local processing is supported through Oracle
Multimedia Java classes and Java Advanced Imaging (JAI). Oracle Multimedia Java
classes supply direct access to all media types from the client. JAI provides a set of
APIs for media processing on the client.

Figure 1–1 Oracle Multimedia Architecture

Oracle Multimedia features available only on Oracle Technology Network (OTN)
include the following:

■ Oracle Multimedia Plug-in for RealNetworks Streaming Servers (see
Section 1.10.2)

■ Oracle Multimedia Plug-in for Microsoft Windows Media Services (see
Section 1.10.2)

1.2 Object Relational Technology
Oracle Database is an object relational database management system. Thus, in addition
to its traditional role in the safe and efficient management of relational data, Oracle

Oracle Fusion Middleware

Oracle
JDeveloper

ADF

PL/SQL
Toolkit

Oracle
Portal

Oracle
Multimedia

Java
Classes

JSP Tag
Libraries

HTTPRTP/
RTSP

MMS

Thin Client
Browser
Protocol
Plug-in

HTTP

Oracle Database

Image
Processor

JAI

OCI

JVM

Table

Streaming
Servers

Media
Parser

Application
Servers

Third-Party
Media

Processors

External
File

S

Oracle
Multimedia

Java
Classes

JAI

Thick Clients

JDBC JDBC OCI OCI JDBC

Audio

Video

Image

Oracle Multimedia Capabilities

1-4 Oracle Multimedia User's Guide

Database provides support for the definition of object types, including the data
associated with objects and the operations (methods) that can be performed on them.

Object relational technology includes integral support for BLOBs to provide the basis
for adding complex objects to databases. Complex objects include: digitized audio,
image, video, and Digital Imaging and Communications in Medicine (DICOM) format
medical images and other data.

Oracle Multimedia provides four object relational types, which store data source
information in an object relational type known as ORDSource:

■ ORDAudio for audio data characteristics

■ ORDDoc for heterogeneous data characteristics

■ ORDImage for image data characteristics

■ ORDVideo for video data characteristics

In addition, Oracle Multimedia provides the ORDDicom object relational type for
characteristics of DICOM content produced by medical devices.

1.3 Oracle Multimedia Capabilities
The capabilities of Oracle Multimedia include the storage, retrieval, management, and
manipulation of multimedia data managed by Oracle Database.

Multimedia applications have common and unique requirements. Oracle Multimedia
object types support common application requirements and can be extended to
address application-specific requirements. With Oracle Multimedia, multimedia data
can be managed as easily as standard attribute data.

Oracle Multimedia is accessible to applications through both relational and object
interfaces. Database applications written in Java, C++, or traditional third-generation
languages (3GLs) can interact with Oracle Multimedia through modern class library
interfaces, or PL/SQL and Oracle Call Interface (OCI).

Oracle Multimedia supports storage of the popular file formats, including desktop
publishing images, and streaming audio and video formats in databases. Oracle
Multimedia provides the means to add audio, image, and video, or other
heterogeneous media columns or objects to existing tables, and insert and retrieve
multimedia data. This support enables database designers to extend existing databases
with multimedia data, or to build new end-user multimedia database applications.
Oracle Multimedia developers can use the basic functions provided here to build
specialized multimedia applications.

Oracle Multimedia uses object types, similar to Java or C++ classes, to describe
multimedia data. These object types are called ORDAudio, ORDDoc, ORDImage, and

See Also:

■ Oracle Database SecureFiles and Large Objects Developer's Guide for
extensive information about using BLOBs and BFILEs

■ Oracle Multimedia Reference for reference information about the
object types and methods for audio, heterogeneous, image, and
video media, and for more information about the ORDSource
object type and methods

■ Oracle Multimedia DICOM Developer's Guide for reference and
other information about the ORDDicom object type and methods
for DICOM format medical images and other data

Oracle Multimedia Capabilities

Introduction to Oracle Multimedia 1-5

ORDVideo. An instance of these object types consists of attributes, including metadata
and the media data, and methods. Media data is the actual audio, image, or video, or
other heterogeneous media data. Metadata is information about the data, such as
object length, compression type, or format. Methods are procedures that can be
performed on objects, such as getContent() and setProperties().

The Oracle Multimedia objects have a common media data storage model. The media
data component of these objects can be stored in the database, in a BLOB under
transaction control. The media data can also be stored outside the database, without
transaction control. In this case, a pointer is stored in the database under transaction
control, and the media data is stored in:

■ File-based large object (BFILE)

■ An HTTP server-based URL

■ A user-defined source on a specialized media data server, or other server

Media data stored outside the database can provide a convenient mechanism for
managing large, existing or new, media repositories that reside as flat files on erasable
or read-only media. This data can be imported into BLOBs at any time for transaction
control. Section 1.8 describes several ways of loading multimedia data into a database.

Media metadata is stored in the database under Oracle Multimedia control. Whether
media data is stored within or outside the database, Oracle Multimedia manages
metadata for all the media types and might automatically extract it for audio, image,
and video. This metadata includes these attributes:

■ Storage information about audio, image, and video, or other heterogeneous media
data, including the source type, location, and source name, and whether the data is
stored locally (in the database) or externally

■ Update time stamp information for audio, image, and video, or other
heterogeneous media data

■ Audio and video data description

■ Audio, image, and video, or other heterogeneous media data format

■ MIME type of the audio, image, and video, or other heterogeneous media data

■ Audio characteristics: encoding type, number of channels, sampling rate, sample
size, compression type, and play time (duration)

■ Image characteristics: height and width, image content length, image content
format, and image compression format

■ Video characteristics: frame width and height, frame resolution, frame rate, play
time (duration), number of frames, compression type, number of colors, and bit
rate

■ Extracted metadata in XML, such as the director or producer of a movie

In addition to metadata extraction methods, a minimal set of image manipulation
methods is provided. For images, this includes format conversion, page selection,
quantize operations, compression, scaling, cropping, copying, flipping, mirroring,
rotating, sharpening, adjusting the gamma (brightness), adding watermarks to images,
removing metadata from images, and embedding metadata into images.

See Also:

Oracle Multimedia Reference for more information about image
processing operations

Audio Concepts

1-6 Oracle Multimedia User's Guide

Oracle Multimedia is extensible. It supports a base set of popular audio, image, and
video data formats for multimedia processing that also can be extended, for example,
to support additional formats, new digital compression and decompression schemes
(codecs), data sources, and even specialized data processing algorithms for audio and
video data. See Chapter 7 for more information about extending Oracle Multimedia.

Oracle Multimedia is a building block for various multimedia applications, rather than
an end-user application. It consists of object types and their respective methods for
managing and processing multimedia data. Some example applications for Oracle
Multimedia are:

■ Repositories for digital check images

■ Electronic health records, including DICOM medical images

■ Call centers (for example, 911 and product call centers)

■ Physical asset inventories

■ Distance learning and online learning

■ Real estate marketing

■ Stock photography archives (for example, digital art galleries and professional
photographers)

■ Document imaging archives

■ Financial news service customer information

■ Web publishing

■ Audio and video Web stores

1.4 Audio Concepts
This section contains information about digitized audio concepts, and information
about using the ORDAudio object type to build audio applications or specialized
ORDAudio objects, in these subsections:

■ Digitized Audio

■ Audio Components

1.4.1 Digitized Audio
ORDAudio integrates the storage, retrieval, and management of digitized audio data
in a database.

Audio may be produced by an audio recorder, an audio source such as a microphone,
digitized audio, other specialized audio recording devices, or even by program
algorithms. Audio recording devices take an analog or continuous signal, such as the
sound picked up by a microphone or sound recorded on magnetic media, and convert
it into digital values with specific audio characteristics such as format, encoding type,
number of channels, sampling rate, sample size, compression type, and audio
duration.

1.4.2 Audio Components
Digitized audio consists of the audio data (digitized bits) and attributes that describe
and characterize the audio data. Audio applications sometimes associate
application-specific information, such as the description of the audio clip, date

ORDDoc or Heterogeneous Media Data Concepts

Introduction to Oracle Multimedia 1-7

recorded, author or artist, and so on, with audio data by storing descriptive text in an
attribute or column in the database table.

The audio data can have different formats, encoding types, compression types,
numbers of channels, sampling rates, sample sizes, and playing times (duration)
depending upon how the audio data was digitally recorded. ORDAudio can store and
retrieve audio data of any supported data format. ORDAudio can automatically
extract metadata from audio data of a variety of popular audio formats. ORDAudio
can also extract application attributes and store them in the comments field of the
object in XML form. ORDAudio is extensible and can be made to recognize and
support additional audio formats.

The size of digitized audio (number of bytes) tends to be large compared to traditional
computer objects, such as numbers and text. Therefore, several encoding schemes are
used that squeeze audio data into fewer bytes, thus putting a smaller load on storage
devices and networks.

1.5 ORDDoc or Heterogeneous Media Data Concepts
This section contains information about heterogeneous media data concepts, and
information about using the ORDDoc object type to build applications or specialized
ORDDoc objects, in these subsections:

■ Digitized Heterogeneous Media Data

■ Heterogeneous Media Data Components

1.5.1 Digitized Heterogeneous Media Data
ORDDoc integrates the storage, retrieval, and management of heterogeneous media
data in a database.

The ORDDoc type can store any heterogeneous media data including audio, image,
and video data in a database column. Instead of having separate columns for audio,
image, text, and video objects, you can use one column of ORDDoc objects to represent
all types of multimedia.

1.5.2 Heterogeneous Media Data Components
Heterogeneous media data components consist of the data (digitized bits) and
attributes that describe and characterize the heterogeneous media data.

Heterogeneous media data can have different formats, depending upon the
application generating the media data. Oracle Multimedia can store and retrieve
media data of any supported data format. The ORDDoc type can be used in
applications that require you to store different types of heterogeneous media data
(such as audio, image, video, and any other type of media data) in the same column so
you can build a common metadata index on all the different types of media data.
Using this index, you can search across all the different types of heterogeneous media
data. You cannot use this same search technique if the different types of heterogeneous
media data are stored in different types of objects, in different columns of relational
tables.

See Also:

Oracle Multimedia Reference for a list of supported data formats from
which ORDAudio can extract and store attributes and other audio
features

Image Concepts

1-8 Oracle Multimedia User's Guide

ORDDoc can automatically extract metadata from data of a variety of popular audio,
image, and video data formats. ORDDoc can also extract application attributes and
store them in the comments attribute of the object in XML form. ORDDoc is extensible
and can be made to recognize and support other heterogeneous media data formats.

1.6 Image Concepts
This section contains information about digitized image concepts, and information
about using the ORDImage object type to build image applications or specialized
ORDImage objects, in these subsections:

■ Digitized Images

■ Image Components

■ Metadata in Images

■ Medical Imaging

■ Metadata Extraction

■ Image Processing

■ SQL/MM Still Image Standard Support

1.6.1 Digitized Images
ORDImage integrates the storage, retrieval, and management of digitized images in a
database.

ORDImage supports two-dimensional, static, digitized raster images stored as binary
representations of real-world objects or scenes. Images may be produced by a
document or photograph scanner, a video source such as a digital camera or VCR
connected to a video digitizer or frame grabber, other specialized image capture
devices, or even by program algorithms. Capture devices take an analog or continuous
signal such as the light that falls onto the film in a camera, and convert it into digital
values on a two-dimensional grid of data points known as pixels. Devices involved in
the capture and display of images are under application control.

1.6.2 Image Components
Digitized images consist of the image data (digitized bits) and attributes that describe
and characterize the image data. Image applications sometimes associate
application-specific information, such as the name of the person pictured in a
photograph, description of the image, date photographed, photographer, and so on,
with image data by storing this descriptive text in an attribute or column in the
database table.

The image data (pixels) can have varying depths (bits per pixel) depending on how the
image was captured, and can be organized in various ways. The organization of the
image data is known as the data format. ORDImage can store and retrieve image data
of any data format. ORDImage can process and automatically extract properties of
images of a variety of popular data formats. In addition, certain foreign images
(formats not natively supported by ORDImage) have limited support for image
processing.

See Also:

Oracle Multimedia Reference for a list of supported data formats from
which ORDDoc can extract and store attributes

Image Concepts

Introduction to Oracle Multimedia 1-9

The storage space required for digitized images can be large compared to traditional
attribute data such as numbers and text. Many compression schemes are available to
squeeze an image into fewer bytes, thus reducing storage device and network load.
Lossless compression schemes squeeze an image so that when it is decompressed, the
resulting image is bit-for-bit identical with the original. Lossy compression schemes do
not result in an identical image when decompressed, but rather, one in which the
changes may be imperceptible to the human eye. As compared with lossless
compression schemes, lossy compression schemes generally provide higher
compression.

The image interchange format describes a well-defined organization and use of image
attributes, data, and often compression schemes, enabling different applications to
create, exchange, and use images. Interchange formats are often stored as disk files.
They can also be exchanged in a sequential fashion over a network and be referred to
as protocols. There are many application subdomains within the digitized imaging
world and many applications that create or use digitized images within these.
ORDImage supports storage and retrieval of all image data formats, and processing
and attribute extraction of many image data formats.

1.6.3 Metadata in Images
Oracle Database 10g, Release 2 added an image metadata feature to Oracle
Multimedia. The metadata feature enhanced the behavior of the Oracle Multimedia
ORDImage object type by adding the ability to read (or extract) and write (or embed)
application metadata in images. In addition, this feature adopted a standard way to
represent metadata when it is separate from an image file. Metadata can be stored in a
database, indexed, searched, and made available to applications using the standard
mechanisms of Oracle Database. See Chapter 6 for more information about the image
metadata feature.

1.6.4 Medical Imaging
Oracle Database 10g, Release 2 (10.2) added the Digital Imaging and Communications
in Medicine (DICOM) feature to Oracle Multimedia. The Oracle Multimedia feature
enhanced the behavior of the Oracle Multimedia ORDImage object type by enabling
Oracle Multimedia to recognize standalone DICOM objects and extract a subset of
embedded DICOM attributes relating to patient, study, and series.

See Also:

Oracle Multimedia Reference for a list of supported data formats from
which ORDImage can process, extract, and store attributes and other
image features

Image Concepts

1-10 Oracle Multimedia User's Guide

Oracle Database 11g, Release 1 (11.1) substantially enhanced the medical imaging
format support for Oracle Multimedia DICOM by providing the following:

■ Storage and retrieval of medical imaging data in the database to synchronize the
DICOM data with the associated business data

■ Full object and relational interfaces to Oracle Multimedia DICOM services

■ Extraction of DICOM metadata according to user-specifiable XML documents

■ Querying using associated relational data and extracted metadata

■ Image processing, such as thumbnail generation

■ Creation of new DICOM objects

■ Conformance validation based on a set of user-specified conformance rules

■ Making DICOM objects anonymous based on user-defined rules that specify the
set of attributes to be made anonymous and how to make those attributes
anonymous

■ The ability to update run-time behaviors, such as the version of the DICOM
standard supported, without installing a new release of Oracle Database

1.6.5 Metadata Extraction
Oracle Multimedia provides the ability to extract content and format metadata from
media sources (audio and video files), and collects and organizes this metadata as an
XML formatted CLOB. Once metadata has been extracted and stored, you can index
the metadata for powerful full text and thematic media searches using Oracle Text.
Thus, the database can be queried to locate the media data based on the metadata
extracted from the media.

Note: In Oracle Database 11g, Release 1 (11.1), Oracle introduced
new and substantially enhanced features to support DICOM content.
As a result, beginning with Oracle Database 11g, Release 2 (11.2), the
DICOM support in ORDImage objects that was introduced in Oracle
Database 10g, Release 2 (10.2) is not being enhanced, and may be
deprecated in a future release.

The Oracle Database 10g, Release 2 DICOM support is still available in
Oracle Database 11g, Release 2. However, Oracle recommends writing
new medical imaging applications to use the DICOM support that
was introduced in Oracle Database 11g, Release 1. Oracle also
recommends migrating existing applications from the DICOM
support in Oracle Database 10g, Release 2 (ORDImage objects) to the
DICOM support in Oracle Database 11g, Release 1 at your
convenience. See "Migrating from Release 10.2 DICOM Support" in
Oracle Multimedia DICOM Developer's Guide for instructions.

See Also:

Oracle Multimedia DICOM Developer’s Guide for more information
about Oracle Multimedia DICOM features and enhancements

See Also:

The setProperties() method inOracle Multimedia Reference for more
information about metadata extraction

Video Concepts

Introduction to Oracle Multimedia 1-11

1.6.6 Image Processing
Oracle Multimedia supports image processing, such as format transcoding, cutting,
scaling, generating thumbnail images, and applying watermarks. In addition, when
the destination image file format is RAW Pixel (RPIX) or Microsoft Windows Bitmap
(BMPF), Oracle Multimedia supports several operators for changing the format
characteristics.

1.6.7 SQL/MM Still Image Standard Support
Oracle Multimedia also provides support for the first edition of the ISO/IEC
13249-5:2001 SQL MM Part5:StillImage standard (commonly referred to as the
SQL/MM Still Image standard), which includes these object relational types for image
characteristics: SI_StillImage, SI_AverageColor, SI_Color, SI_ColorHistogram, SI_
FeatureList, SI_PositionalColor, and SI_Texture.

The following ORDImage features are not specified by the SQL/MM Still Image
Standard, and therefore are not available for StillImage objects:

■ Storing image data outside the database

■ Image processing operations (such as scaling up, compressing, and so on) that are
specific to ORDImage

■ Java client API

1.7 Video Concepts
This section contains information about digitized video concepts, and information
about using ORDVideo to build video applications or specialized ORDVideo objects,
in these subsections:

■ Digitized Video

■ Video Components

1.7.1 Digitized Video
ORDVideo integrates the storage, retrieval, and management of digitized video data in
a database.

Video may be produced by a video recorder, a video camera, digitized animation
video, other specialized video recording devices, or even by program algorithms.
Some video recording devices take an analog or continuous signal, such as the video
picked up by a video camera or video recorded on magnetic media, and convert it into
digital values with specific video characteristics such as format, encoding type, frame
rate, frame size (width and height), frame resolution, video length, compression type,
number of colors, and bit rate.

See Also:

Oracle Multimedia Reference for more information about image
processing

See Also:

Oracle Multimedia Reference for more information about the SQL/MM
Still Image Standard object types

Loading Multimedia Data

1-12 Oracle Multimedia User's Guide

1.7.2 Video Components
Digitized video consists of the video data (digitized bits) and the attributes that
describe and characterize the video data. Video applications sometimes associate
application-specific information, such as the description of the video training tape,
date recorded, instructor's name, producer's name, and so on, within the video data.

The video data can have different formats, compression types, frame rates, frame sizes,
frame resolutions, playing times, compression types, number of colors, and bit rates
depending upon how the video data was digitally recorded. ORDVideo can store and
retrieve video data of any supported data format. ORDVideo can:

■ Automatically extract metadata from video data of a variety of popular video
formats

■ Extract application attributes and store them in the comments attribute of the
object in XML form

■ Be made to recognize and support additional video formats (because it is
extensible)

The size of digitized video (number of bytes) tends to be large compared to traditional
computer objects, such as numbers and text. Therefore, several encoding schemes are
used that squeeze video data into fewer bytes, thus putting a smaller load on storage
devices and networks.

1.8 Loading Multimedia Data
Multimedia data can be managed best by Oracle Database. Load your multimedia data
into the database to take advantage of its reliability, scalability, availability, and data
management capabilities. To bulk load multimedia data into the database, you can use:

■ SQL*Loader

SQL*Loader is an Oracle utility that lets you load data, and in this case,
multimedia data (LOB data), from external multimedia files into a table of a
database containing Oracle Multimedia object type columns.

■ PL/SQL

A procedural extension to SQL, PL/SQL is an advanced fourth-generation
programming language (4GL) of Oracle. You can write PL/SQL procedures to
load multimedia data from BLOB, file system, and URL media data sources into
Oracle Multimedia object type columns.

An advantage of using SQL*Loader is that it is easy to create and test the control file
that controls your data loading operation.

An advantage of using PL/SQL scripts to load your data is that you can call methods
as you load data to generate thumbnail images, or extract properties.

See Also:

Oracle Multimedia Reference for a list of supported data formats from
which ORDVideo can extract and store attributes and other video
features

See Also:

■ Oracle Database Utilities for more information about SQL*Loader

■ Oracle Database PL/SQL Language Reference for more information
about PL/SQL procedures

Multimedia Storage and Querying

Introduction to Oracle Multimedia 1-13

1.9 Multimedia Storage and Querying
Media can be stored in Oracle Multimedia object types, or directly in BLOBs or
BFILEs. You can realize the most benefit by storing media in Oracle Multimedia object
types. However, many of the features of Oracle Multimedia are available to media
stored in BLOBs and BFILEs using the relational interface.

The Oracle Multimedia relational interface lets developers use static methods of Oracle
Multimedia object types with existing and new media stored in BLOBs and BFILEs.
Specifically, developers can move media data between the local file system and the
database; parse and extract the properties of the media data; and store these properties
in an XMLType or an XML formatted CLOB, and optionally, in individual relational
columns. Developers are not required to make changes to their existing application
schema or to instantiate Oracle Multimedia object types to take advantage of this
relational interface. Oracle Multimedia static methods can also be used to perform
image processing operations such as cut, scale, compress, and convert format.

The ORDAudio, ORDDoc, ORDImage, and ORDVideo object types all contain an
attribute of type ORDSource and methods for multimedia data source manipulation.

The following subsections briefly describe storage and querying:

■ Storing Multimedia Data

■ Querying Multimedia Data

1.9.1 Storing Multimedia Data
Oracle Multimedia can store multimedia data as an internal source within the
database, under transactional control as a BLOB. It can also externally reference
digitized multimedia data stored as an external source in an operating system-specific
file in a local file system, as a URL on an HTTP server, or as a user-defined source on
other servers, such as media servers. Although these external storage mechanisms are
particularly convenient for integrating existing sets of multimedia data with a
database, the multimedia data is not under transactional control if it is not stored in
the database.

BLOBs are stored in the database tablespaces in a way that optimizes space and
provides efficient access. Large BLOBs cannot be stored inline (BLOBs under 4
kilobytes can be stored inline) with other row data. Depending on the size of the
BLOB, a locator is stored in the row and the actual BLOB (up to 8 terabytes to 128
terabytes, depending on the block size) is stored in other tablespaces. The locator can
be considered a pointer to the actual location of the BLOB value. When you select a
BLOB, you are selecting the locator instead of the value, although this is done
transparently. An advantage of this design is that multiple BLOB locators can exist in a

Note: Do not call ORDSource methods directly. Instead, invoke
the wrapper method of the media object corresponding to the
ORDSource method. This information is presented for users who
want to write their own user-defined sources.

See Also:

■ Oracle Multimedia Reference for more information about the Oracle
Multimedia relational interface

■ Oracle Multimedia Reference for more information about the
ORDSource object type

Accessing Multimedia Data

1-14 Oracle Multimedia User's Guide

single row. For example, you might want to store a short video clip of a training tape,
an audio recording containing a brief description of its contents, a syllabus of the
course, a picture of the instructor, and a set of maps and directions to each training
center all in the same row.

Because BFILEs are not under the transactional control of the database, users could
change the external source without updating the database, thus causing an
inconsistency with the BFILE locator.

Oracle Multimedia ORDAudio, ORDDoc, ORDImage, and ORDVideo object types
provide wrapper methods to perform these functions:

■ Set the source of the data as local or external

■ Modify the time an object was last updated

■ Set information about the external source type, location, and name of the data

■ Transfer data into or out of the database

■ Obtain information about the local data content such as its length, location, or its
handle to the BLOB, put the content into a temporary BLOB, or delete it

■ Access source data by opening it, reading it, writing to it, trimming it, and closing
it

1.9.2 Querying Multimedia Data
Once stored within a database, multimedia data can be queried and retrieved by using
the various alphanumeric columns or object attributes of the table to find a row that
contains the desired data. For example, you can select a video clip from the Training
table where the course name is 'Oracle Database Concepts'.

Multimedia data can be queried by extracted metadata, by other relational table
columns, and by content, such as image content-based retrieval.

1.10 Accessing Multimedia Data
Applications access and manipulate multimedia data using SQL, PL/SQL, OCI, or
Java through the object relational types OrdAudio, OrdDoc, OrdImage, and OrdVideo.

The following subsections describe ways in which applications, Oracle development
tools, and third-party development tools can access multimedia data stored in the
database using Oracle Multimedia object types:

■ Oracle Multimedia Java API

■ Streaming Content from Oracle Database

■ Support for Web Technologies

■ Oracle Multimedia Support for Java Advanced Imaging (JAI)

See Also:

■ Oracle Database SecureFiles and Large Objects Developer's Guide

■ Oracle Call Interface Programmer's Guide

Both manuals provide detailed information about using BLOBs and
BFILEs.

Accessing Multimedia Data

Introduction to Oracle Multimedia 1-15

1.10.1 Oracle Multimedia Java API
Oracle Multimedia Java API enables Java applications on any tier (client, application
server, or database) to manipulate and modify audio, image, and video data, or
heterogeneous media data stored in a database. Oracle Multimedia Java API makes it
possible for Java database connectivity (JDBC) result sets to include both traditional
relational data and Oracle Multimedia media objects. This support enables
applications to easily select and operate on a result set that contains sets of Oracle
Multimedia columns plus other relational data. These classes also enable access to
object attributes and invocation of object methods.

1.10.2 Streaming Content from Oracle Database
You can stream audio and video content stored in Oracle Database using an Oracle
Multimedia plug-in that supports a third-party streaming server, and deliver this
content for play on a client that uses the browser-supported streaming player. Oracle
Multimedia provides two plug-ins to stream content from Oracle Database: Oracle
Multimedia Plug-in for RealNetworks Streaming Servers and Oracle Multimedia
Plug-in for Windows Media Services.

To download these plug-ins, see the Oracle Multimedia Software section of the Oracle
Technology Network Web site at

http://www.oracle.com/technology/products/multimedia/

Oracle Multimedia Plug-in for RealNetworks Streaming Servers
Oracle Multimedia Plug-in for RealNetworks Streaming Servers is a data source
plug-in that enables RealNetworks servers to stream media data directly from Oracle
Database to a media player client. The plug-in is installed with RealNetworks
Streaming Server, and configured and managed using the administration tool of the
streaming server. See Oracle Multimedia Plug-in for RealNetworks Streaming Servers
Readme for more information.

Oracle Multimedia Plug-in for Microsoft Windows Media Services
Oracle Multimedia Plug-in for Microsoft Windows Media Services enables Microsoft
Windows Media servers to stream multimedia content to a client directly from Oracle
Database. This package also includes a Plug-in Property Page that can be accessed
from the Windows Media Services Administrative interfaces. The Plug-in Property
Page enables users to inspect, define, and edit the Plug-in mount points that map to
media content in Oracle Database. The Plug-in mount points are used to configure the
source URL of a server publishing point, from which a Microsoft Windows Media
Player client requests media content stored in Oracle Database. See Oracle Multimedia
Plug-in for Microsoft Windows Media Services Readme for more information.

See Also:

Oracle Multimedia Java API Reference for more information about this
Java API

See Also:

http://www.realnetworks.com/ for more information about
streaming servers from RealNetworks

Accessing Multimedia Data

1-16 Oracle Multimedia User's Guide

1.10.3 Support for Web Technologies
Using Oracle Multimedia support for Web technologies, you can easily integrate
multimedia data into Web and Java applications. You can also store, retrieve, and
manage rich media content in a database.

Oracle Multimedia Servlets and JSP Java API
Oracle Multimedia Servlets and JSP Java API facilitates the upload and retrieval of
multimedia data stored in a database using the Oracle Multimedia OrdAudio,
OrdDoc, OrdImage, and OrdVideo object types. Oracle Multimedia Servlets and JSP
Java API uses Oracle Multimedia Java API to access data stored in the Oracle
Multimedia object types. However, Oracle Multimedia Servlets and JSP Java API can
also be used to handle upload and retrieval of data using BLOBs directly.

The OrdHttpResponseHandler class facilitates the retrieval of multimedia data
from a database and its delivery to a browser or other HTTP client from Java servlets.
The OrdHttpJspResponseHandler class provides the same features for JavaServer
Pages (JSP).

Form-based file uploading using HTML forms encodes form data and uploaded files
in Post requests using the multipart/form-data format. The
OrdHttpUploadFormData class facilitates the processing of such requests by parsing
the Post data and making the contents of regular form fields and the contents of
uploaded files readily accessible to a Java servlet or JSP. The handling of uploaded files
is facilitated by the OrdHttpUploadFile class, which provides an easy-to-use API
that applications call to load audio, image, and video data, or heterogeneous media
data into a database.

Integration with Oracle Portal
Oracle Portal enables you to create useful and appealing enterprise portals. A key
feature of the Oracle Portal framework are portlets, which provide convenient access
to any type of data stored in database tables including rich content such as image,
audio, and video data.

Oracle Portal has components that enable developers to create objects that capture, act
upon, and display data from Oracle Database tables or views. You can connect these
Oracle Portal components to create Web applications that can interact directly with
enterprise databases. Because Oracle Multimedia objects are stored in Oracle Database
tables, they can be included in the types of data available to Oracle Portal components.

Two Oracle Portal components are predefined: Forms and Reports. Oracle Portal
wizards help you create forms and reports.

The Forms component builds a Web interface that lets users interact with data -- they
can add, query, update, and delete information stored in the database. To enable users

Note: JSP engines are not required to support access to the servlet
binary output stream. Therefore, not all JSP engines support the
delivery of multimedia data using the
OrdHttpJspResponseHandler class.

See Also:

Oracle Multimedia Servlets and JSP Java API Reference for more
information about this Java API

Accessing Multimedia Data

Introduction to Oracle Multimedia 1-17

to upload and download rich content between the database and the portal framework,
build a form on tables containing Oracle Multimedia objects.

The Reports component displays dynamic data in a columnar report format through a
Web interface. A report build on tables containing Oracle Multimedia objects enables
users to download rich media content from the database tables to the Oracle Portal
framework.

Integration with Oracle Application Development Framework Business
Components
For rapid development of media-rich Web applications, Oracle offers developers a Java
integrated development environment (IDE), Oracle JDeveloper, that maximizes
developer productivity. Oracle JDeveloper enables developers to build multitier,
component-based Internet applications in Java that use Oracle Multimedia features to
create visually attractive applications. Oracle Application Development Framework
Business Components (ADF Business Components) is the component of JDeveloper
that provides a set of intelligent software building blocks to manage common facilities.
An Oracle Multimedia/ADF Business Components integration package includes
media-specific domain classes and a set of utilities. The domain classes are wrappers
of the classes of Oracle Multimedia Java API, and inherit all the underlying
multimedia retrieval, upload, and manipulation methods. The domain classes support
the ADF Business Components APIs and provide built-in integrated multimedia
capabilities, while the utility classes support the retrieval, rendering, and uploading of
multimedia content. Together, they provide a fully featured, integrated application
development environment that enables a developer to create a wide variety of
media-rich applications.

For more information about using Oracle Multimedia with Oracle JDeveloper and
Oracle ADF Business Components, see the Oracle Multimedia/ADF Business
Components Interactive Demonstration in the Oracle Multimedia Training section on
the Oracle Technology Network Web site at

http://www.oracle.com/technology/products/multimedia/

1.10.4 Oracle Multimedia Support for Java Advanced Imaging (JAI)
Oracle Multimedia Java API describes three types of stream objects, which provide
interfaces to BLOB and BFILE data that can be used by Java Advanced Imaging (JAI).
These Java classes enable a JAI application to read and write image data stored in a
database using Oracle Multimedia OrdImage objects, or in BLOBs or BFILEs.

See Also:

Oracle Fusion Middleware Developer's Guide for Oracle Portal in the
Oracle Fusion Middleware Online Documentation Library for more
information about Oracle Portal

See Also:

■ Oracle Multimedia Java API Reference for more information about
the Java classes for JAI stream objects provided by Oracle
Multimedia

■ http://java.sun.com/ for more information about Java
Advanced Imaging (JAI)

Extending Oracle Multimedia

1-18 Oracle Multimedia User's Guide

1.11 Extending Oracle Multimedia
Oracle Multimedia can be extended to support:

■ Other external sources of media data not currently supported (other than BLOB,
BFILE, or URL)

■ Other media data formats not currently supported

■ Audio and video data processing

See Chapter 7 for more information about extending Oracle Multimedia.

Note: Oracle Multimedia can store any format. However, it can only
extract metadata and process (image only) media data for formats that
are supported or known to Oracle Multimedia.

See Also:

See the audio, image, and video data format appendixes in Oracle
Multimedia Reference for the lists of supported formats

2

Oracle Multimedia Application Development 2-1

2 Oracle Multimedia Application Development

Oracle Multimedia enables you to develop either traditional client/server or two-tier
applications, or multitier applications. Either method can then deploy Web
applications to run on an application server tier, be tightly integrated with Oracle
Database, and enable users to access the application from their desktop through a Web
browser.

Using a complete development framework supported by class library interfaces, you
can create production quality Oracle Multimedia applications for use in a production
environment where users can interact with the application through either the
standalone client interface or a Web browser. For Web applications, which are based on
standards such as TCP/IP, HTTP, HTML, XML, and XHTML, this capability is
facilitated by rapid developments in the underlying technology. As key software
components become more tightly integrated, developers' tasks to design, create, and
manage Web applications become faster, easier, and simpler to implement.

Using either the object type interface or the relational interface, Oracle Multimedia
provides Internet support for Oracle Fusion Middleware and Oracle Database and
authoring tools so you can quickly develop Web-based applications to upload to the
database, retrieve from it, and manipulate multimedia data for delivery to Web
browsers.

This chapter includes these sections:

■ Overview of the Application Development Environment on page 2-2

■ Developing PL/SQL Client Applications Using the PL/SQL API on page 2-6

■ Developing PL/SQL Web Applications on page 2-11

■ Developing Java Client Applications Using JDBC on page 2-15

■ Developing Java-Based Web Applications on page 2-23

See these chapters for more sample applications:

Chapter Sample Application

Chapter 3 Describes the Oracle Multimedia Photo Album sample Web
application, which is implemented using PL/SQL, Java
servlets, and JavaServer Pages (JSP). This sample application
demonstrates how to apply the steps described in Section 2.3
and Section 2.5 in a real Web application to upload and retrieve
media data stored in a database.

Chapter 4 Describes the Oracle Multimedia Code Wizard application,
which lets you create PL/SQL stored procedures for the
PL/SQL Gateway for uploading and retrieving media data
stored in a database using Oracle Multimedia object types.

Overview of the Application Development Environment

2-2 Oracle Multimedia User's Guide

2.1 Overview of the Application Development Environment
Oracle Multimedia supports application development by providing these tools and
capabilities, which are briefly described in the following subsections:

■ Java Class Libraries and Other Packages and Interfaces

■ Integration With PL/SQL Gateway and PL/SQL Web Toolkit

■ Integration With Components in Other Oracle Development Tools

■ Integration With Third-Party Streaming Media Servers

2.1.1 Java Class Libraries and Other Packages and Interfaces
Oracle Multimedia provides these Java class libraries, which enable access (insert,
update, and retrieve) and manipulation (process) of multimedia data stored in the
database:

■ Oracle Multimedia Java API class library

■ Java Advanced Imaging (JAI) classes in the Oracle Multimedia Java API class
library

■ Oracle Multimedia Servlets and JSP Java API class library

■ Oracle Multimedia JSP Tag Library

And, Oracle Multimedia provides these specialized Java class libraries:

■ Oracle Multimedia DICOM Java API class library

■ Oracle Multimedia Mid-Tier Java API class library

Oracle Multimedia also integrates with the Oracle Multimedia/Oracle Application
Development Framework Business Components (ADF Business Components)
integration package, and with C++ and traditional 3GLs through modern class library
interfaces. Class libraries provide access to multimedia data stored in the database in
several ways.

Oracle Multimedia Java API Class Library
Using the Java database connectivity (JDBC) interface, the Oracle Multimedia Java API
class library enables you to use Java proxy classes for Oracle Multimedia database
objects to quickly develop Java applications for use on any tier (client, application
server, or database) to manipulate and modify audio, image, and video data, or
heterogeneous media data stored in a database. Oracle Multimedia Java API makes it
possible for JDBC result sets to include both traditional relational data and Oracle
Multimedia columns of object type media data, to easily select and operate on the
result set, to access object attributes, and to invoke object methods. Section 1.10.1 for
general information, and Section 2.4 for a description of how to use Java and JDBC to
develop media-rich Java client applications using this Java class library.

Chapter 5 Describes the Oracle Multimedia Java API sample application,
which is implemented using Java, JDBC, and Oracle
Multimedia Java classes. This sample application demonstrates
how to apply the steps described in Section 2.4 in a real Java
application to upload and retrieve media data stored in a
database.

Chapter Sample Application

Overview of the Application Development Environment

Oracle Multimedia Application Development 2-3

Java Advanced Imaging Classes
The Oracle Multimedia Java API class library includes several Java Advanced Imaging
(JAI) classes. The Oracle Multimedia Java API describes three types of stream objects,
which provide interfaces to BLOB and BFILE data, that can be used by JAI. These
classes enable a JAI application to read and write image data stored in a database
using Oracle Multimedia OrdImage objects, or in BLOBs or BFILEs. See Section 1.10.4
for general information.

Oracle Multimedia Servlets and JSP Java API Class Library
The Oracle Multimedia Servlets and JSP Java API class library supports Web
technologies, enabling you to quickly develop Java applications using Java servlets
and JavaServer Pages (JSP). See Section 1.10.3 for general information. Section 2.5
describes how to develop media-rich Java-based Web applications using this Java class
library. Section 3.2 includes an example of a Java servlet application, and Section 3.3
includes an example of a JSP application.

Oracle Multimedia JSP Tag Library
The Oracle Multimedia JSP Tag Library is an extension of the Oracle Multimedia
Servlets and JSP Java API class library. This Java class library provides JSP tags that
simplify retrieving and uploading media data from and to Oracle Database in
multimedia JSP Web applications.

Oracle Multimedia DICOM Java API Class Library
Oracle Multimedia DICOM Java API is a specialized class library that enables users to
write Java applications using the Oracle Multimedia object designed to store Digital
Imaging and Communications in Medicine (DICOM) data. See Section 1.6.4 for general
information.

See Also:

■ Oracle Multimedia Java API Reference for reference information
about this Java class library

■ Oracle Database JDBC Developer's Guide for more information about
using JDBC

See Also:

Oracle Multimedia Java API Reference for reference information about
the JAI classes in this Java class library

See Also:

Oracle Multimedia Servlets and JSP Java API Reference for reference
information about this Java class library

See Also: Oracle Multimedia JSP Tag Library Guide for complete
information about this Java class library

See Also:

■ Oracle Multimedia DICOM Java API Reference for reference
information about this Java class library

■ Oracle Multimedia DICOM Developer’s Guide for more information
about Oracle Multimedia DICOM features and enhancements

Overview of the Application Development Environment

2-4 Oracle Multimedia User's Guide

Oracle Multimedia Mid-Tier Java API Class Library
Oracle Multimedia Mid-Tier Java API is a specialized class library that enables users to
write Java applications for extracting DICOM metadata outside of Oracle Database
before the data is loaded into the database.

Oracle Multimedia/Oracle Application Development Framework Business
Components Integration Package
The Oracle Multimedia/Oracle Application Development Framework Business
Components (ADF Business Components) integration package includes the Oracle
Multimedia domain classes and a set of utilities for use with Oracle JDeveloper. Oracle
JDeveloper is a Java-integrated development environment (IDE) tool that supports the
application framework (ADF Business Components), enabling you to build multitier,
component-based Internet applications. See Section 1.10.3 for general information.

2.1.2 Integration With PL/SQL Gateway and PL/SQL Web Toolkit
Oracle Multimedia uses the PL/SQL Gateway (mod_plsql) feature of the Oracle HTTP
Server and the PL/SQL Web Toolkit features of Oracle Fusion Middleware and Oracle
Database to listen for browser requests, to execute stored PL/SQL procedures in the
database using Oracle Net and Oracle Call Interface (OCI), and to generate an HTML
page containing data and code for the response returned to the Web browser for
display. As a Web application developer, you can write PL/SQL servlets and PL/SQL
server pages (PSP) that invoke PL/SQL procedures stored in the database through an
Oracle Net connection and OCI. See Section 2.3 for a description of how to use
PL/SQL Gateway and PL/SQL Web Toolkit to develop PL/SQL Web applications. See
Section 3.1 for an example of an application that uses the PL/SQL Gateway and
PL/SQL Web Toolkit for Oracle Fusion Middleware and Oracle Database.

2.1.3 Integration With Components in Other Oracle Development Tools
Oracle Multimedia integrates Oracle development tools with tightly integrated
components to enable you to quickly and easily develop applications that provide
access to (insert, update, and retrieve) and manipulation (process) of multimedia data
stored in the database for delivery to Web browsers and client applications. These
development tools include:

■ Oracle Portal

■ Oracle JDeveloper

■ Oracle Designer

See Also:

■ Oracle Multimedia Mid-Tier Java API Reference for reference
information about this Java class library

■ Oracle Multimedia DICOM Developer’s Guide for more information
about the Oracle Multimedia Mid-Tier Java API feature

See Also:

Oracle Database 2 Day + Java Developer's Guide for more information
about Oracle JDeveloper and ADF Business Components

See Also:

Oracle Database Advanced Application Developer's Guide for more
information about developing PL/SQL Web applications

Overview of the Application Development Environment

Oracle Multimedia Application Development 2-5

■ Oracle Content Management SDK

Oracle Portal
Oracle Portal is a simple browser-based environment for building and deploying
enterprise information portlets (EIPs). An enterprise portal provides access to portlets,
which are summarized versions of applications and Web content situated in defined
regions of the Web page. Oracle Portal portlets execute PL/SQL stored procedures
residing in the database, which in turn generate an HTTP response in the form of a
generated HTML page. Oracle Portal contains two predefined components: Forms and
Reports, which both support rich media content being uploaded or downloaded
between the database and the portal framework form or report. See Section 1.10.3 for
general information.

Oracle JDeveloper
Oracle JDeveloper is an IDE tool, which is written 100% in Java, that supports the
application framework (Oracle Application Development Framework Business
Components). An Oracle Multimedia/ADF Business Components integration package
includes the Oracle Multimedia domain classes and a set of utilities. The domain
classes are wrappers of Oracle Multimedia Java API and inherit all the underlying
multimedia retrieval, upload, and manipulation methods. The domain classes support
the ADF Business Components APIs and provide built-in integrated multimedia
capabilities, while the utility classes support the retrieval, rendering, and uploading of
multimedia content. See Section 1.10.3 for general information.

Oracle Designer
Oracle Designer is a tool used to manage software configuration management for
controlling the evolution of an application from identification of components, through
initiation, evaluation, authorization, development, and implementation. Oracle
Designer can generate C++ classes that enable applications running on the client, on
Oracle Fusion Middleware, or on Oracle Database to call Oracle Multimedia methods.

Oracle Content Management SDK
Oracle Content Management SDK enables you to create custom file system
applications using XML and Java that use the features and capabilities of the database
and a variety of Web-based interfaces, such as Java servlets and JSP pages, or
executing SQL or calling stored PL/SQL procedures for execution in the transaction
context of the database.

2.1.4 Integration With Third-Party Streaming Media Servers
Oracle Multimedia integrates with third-party streaming media servers to enable
dynamic and direct delivery of multimedia data stored in the database to a media
player client. These third-party streaming servers include:

See Also:

Oracle Fusion Middleware Developer's Guide for Oracle Portal in the
Oracle Fusion Middleware Online Documentation Library for more
information about this tool

See Also:

Oracle Fusion Middleware Extension SDK Reference for Oracle JDeveloper
in the Oracle Fusion Middleware Online Documentation Library for
more information about this tool

Developing PL/SQL Client Applications Using the PL/SQL API

2-6 Oracle Multimedia User's Guide

■ Oracle Multimedia Plug-in for RealNetworks Server

■ Oracle Multimedia Plug-in for Microsoft Windows Media Services

You can download these plug-ins from the Oracle Multimedia Software section of the
Oracle Technology Network Web site at

http://www.oracle.com/technology/products/multimedia/

Oracle Multimedia Plug-in for RealNetworks Server
Oracle Multimedia Plug-in for RealNetworks Server is a data source plug-in that
enables a RealNetworks server to stream media data directly from Oracle Database to
a media player client. The plug-in is installed with RealNetworks Server, and
configured and managed using the administration tool of the streaming server. See
Oracle Multimedia Plug-in for RealNetworks Streaming Servers Readme.

Oracle Multimedia Plug-in for Microsoft Windows Media Services
Oracle Multimedia Plug-in for Microsoft Windows Media Services enables Microsoft
Windows Media servers to stream multimedia content to a client directly from Oracle
Database. This plug-in is installed on Windows 2003 Server, and configured with
Windows Media Services. See Oracle Multimedia Plug-in for Microsoft Windows Media
Services Readme.

2.2 Developing PL/SQL Client Applications Using the PL/SQL API
PL/SQL is a completely portable, high-performance transaction processing language
that combines the data manipulation power of SQL with the data processing power of
procedural languages.

This section briefly describes how to manipulate Oracle Multimedia database objects
with the PL/SQL Application Programming Interface (API). The following Oracle
Multimedia object types are available for storing media in the database:

■ ORDAudio

■ ORDDoc

■ ORDImage

■ ORDVideo

The examples in this section use the sample schemas, which may be installed when
you install Oracle.

The following subsections describe how to use various components of the PL/SQL
development environment:

■ Setting Up Your Environment for PL/SQL

■ Media Query in PL/SQL

■ Media Download in PL/SQL

■ Media Upload in PL/SQL

■ Handling Oracle Multimedia Exceptions in PL/SQL

See Also:

http://www.realnetworks.com/ for more information about
streaming servers from RealNetworks

Developing PL/SQL Client Applications Using the PL/SQL API

Oracle Multimedia Application Development 2-7

2.2.1 Setting Up Your Environment for PL/SQL
To access files with PL/SQL, you must create a directory object in the database that
points to a directory that is accessible by the database server. For example, the
following command creates the MEDIA_DIR directory in the sample schema:

CREATE DIRECTORY MEDIA_DIR AS
 'c:\oracle\product\10.2.0\db_1\demo\schema\product_media';

To retrieve media data from the database to a file, you must grant the write permission
on the specified directory to the appropriate user. For example:

GRANT WRITE ON DIRECTORY MEDIA_DIR TO SCOTT;

To upload media data from a file to the database, you must grant the read permission
on the specified directory to the appropriate user. For example:

GRANT READ ON DIRECTORY MEDIA_DIR TO SCOTT;

2.2.2 Media Query in PL/SQL
You can include media attributes (for example: height, width, and MIME type) in
standard SQL queries by using accessor methods (for example: getHeight, getWidth,
and getMimeType). Example 2–1, Example 2–2, and Example 2–3 show how to use
these accessor methods to query one or more object attributes for image, audio, and
video objects, respectively.

Example 2–1 Image Query (Height, Width, and MimeType Attributes)

SELECT t.product_id id,
 t.product_photo.getHeight() height,

See Also:

■ Oracle Multimedia Reference for details about the Oracle
Multimedia object types and available methods in the PL/SQL
API

■ Oracle Database Sample Schemas for information about how the
sample schemas were created and how you can use them

Caution: Performing any of these prohibited actions could cause
internal errors and security violations in the database management
system.

These users, under which Oracle-supplied Oracle Multimedia data
types are installed, are created during database installation, and might
change in future releases:

■ ORDSYS

■ ORDPLUGINS

■ SI_INFORMTN_SCHEMA

Do not connect to or modify any of these users or their contents
(which are supplied by Oracle Multimedia and reserved by Oracle),
with this exception:

■ You can add user-defined packages to the user ORDPLUGINS (see
Chapter 7).

Developing PL/SQL Client Applications Using the PL/SQL API

2-8 Oracle Multimedia User's Guide

 t.product_photo.getWidth() width,
 t.product_photo.getMimeType() mimetype
 FROM pm.online_media t;

Example 2–2 Audio Query (MimeType Attribute)

SELECT t.product_id id,
 t.product_audio.getMimeType() mimetype
 FROM pm.online_media t;

Example 2–3 Video Query (MimeType Attribute)

SELECT t.product_id id,
 t.product_video.getMimeType() mimetype
 FROM pm.online_media t;

2.2.3 Media Download in PL/SQL
To download media from the database into a file on the file system, call the export
method of the Oracle Multimedia object. The following code example exports the
image in the row with product_id 3117 to a file named 3117.jpg in the directory
MEDIA_DIR. This code example highlights in bold the PL/SQL statements where this
export operation takes place.

DECLARE
 img ORDImage;
 ctx RAW(64) := NULL;
BEGIN
 SELECT product_photo
 INTO img
 FROM pm.online_media
 WHERE product_id = 3117;
 img.export(ctx, 'FILE', 'MEDIA_DIR', '3117.jpg');
END;
/

2.2.4 Media Upload in PL/SQL
Media upload means importing media data from the file system into the database
tablespaces. The following series of steps is typical:

1. Insert a new row into the table, creating new objects by using the init method of
the Oracle Multimedia object type.

2. Call the import method of the Oracle Multimedia object to bring the data from the
file system into the database.

3. Call the setProperties method of the Oracle Multimedia object to determine and
populate the attributes of the object.

4. Update the table so that the Oracle Multimedia object in the table contains the
attribute values extracted in the previous step.

The PL/SQL code that implements these steps for inserting a new row in the
PM.ONLINE_MEDIA table is shown in this example:

DECLARE
 img ORDImage;
 aud ORDAudio;
 vid ORDVideo;
 ctx RAW(64) := NULL;
BEGIN

Developing PL/SQL Client Applications Using the PL/SQL API

Oracle Multimedia Application Development 2-9

 -- Insert a new row into the pm.online_media table.
 DELETE FROM pm.online_media WHERE product_id = 3003;
 INSERT INTO pm.online_media
 (product_id,
 product_photo,
 product_audio,
 product_video)
 VALUES (3003,
 ORDImage.init('FILE', 'MEDIA_DIR', 'laptop.jpg'),
 ORDAudio.init('FILE', 'MEDIA_DIR', 'laptop.mpa'),
 ORDVideo.init('FILE', 'MEDIA_DIR', 'laptop.rm'))
 RETURNING product_photo, product_audio, product_video
 INTO img, aud, vid;

 -- Bring the media into the database and populate the attributes.
 img.import(ctx);
 -- ORDImage.import also calls ORDImage.setProperties.

 aud.import(ctx);
 aud.setProperties(ctx);

 vid.import(ctx);
 vid.setProperties(ctx);

 -- Update the table with the properties we have extracted.
 UPDATE pm.online_media
 SET product_photo = img,
 product_audio = aud,
 product_video = vid
 WHERE product_id = 3003;

 COMMIT;
END;
/

2.2.5 Handling Oracle Multimedia Exceptions in PL/SQL
Possible errors that can occur during run time should always be handled in your
application. This practice enables the program to continue its operation even when it
encounters a run-time error. This practice also enables users to know what went wrong
during program operation. Proper error handling practices ensure that, whenever
possible, you are always able to recover from an error while running an application. In
addition, proper error handling provides you with the information you need so you
always know what went wrong.

This section demonstrates proper error handling practices using code examples. These
examples show how to handle some common Oracle Multimedia errors and other
types of errors in PL/SQL programs. These examples are extracted from the PL/SQL
sample applications that are described in Chapter 3 and Chapter 4. (See Oracle
Multimedia Reference for more examples.)

When handling exceptions, PL/SQL uses exception blocks. For example, in PL/SQL,
the exception can appear as:

BEGIN
<some program logic>
EXCEPTION
 WHEN OTHERS THEN
 <some exception logic>
END;

Developing PL/SQL Client Applications Using the PL/SQL API

2-10 Oracle Multimedia User's Guide

When you design, code, and debug your application, you are aware of the places in
your program where processing might stop due to a failure to anticipate an error.
Those are the places in your program where you must add exception handling blocks
to handle the potential errors.

The examples in this section describe exception handling in the Oracle Multimedia
PL/SQL Web Toolkit Photo Album sample application.

The following subsections provide additional details and examples of exception
handling in PL/SQL:

■ Handling the Setting of Properties for Unknown Image Formats in PL/SQL

■ Handling Image Processing for Unknown Image Formats in PL/SQL

2.2.5.1 Handling the Setting of Properties for Unknown Image Formats in PL/SQL
If your program tries to set the properties of an uploaded image (it reads the image
data to get the values of the object attributes so it can store them in the appropriate
attribute fields) and the image format is not recognized, then the setProperties()
method fails. To catch this exception and work around this potential problem, the
application uses the following exception block:

BEGIN
 new_image.setProperties();
EXCEPTION
 WHEN OTHERS THEN
 new_image.contentLength := upload_size;
 new_image.mimeType := upload_mime_type;
END;

In this example, this exception handler sets the MIME type and length of the image
based on the values from the upload table described at the beginning of the insert_
new_photo procedure. The browser sets a MIME type header when the file is
uploaded. The application reads this header to set the ORDImage field.

2.2.5.2 Handling Image Processing for Unknown Image Formats in PL/SQL
If your program tries to process an image in cases when the image format is unknown,
the processCopy() method always fails. To work around this potential problem, the
application uses the following exception block:

BEGIN
 new_image.processCopy('maxScale=50,50', new_thumb);
EXCEPTION
 WHEN OTHERS THEN
 new_thumb.deleteContent();
 new_thumb.contentLength := 0;
END;

In this example from the Oracle Multimedia PL/SQL Web Toolkit Photo Album
application, when the image format is unknown and a thumbnail image cannot be
created, this exception handler deletes the content of the thumbnail image and sets its
length to zero.

See Also:

Oracle Database PL/SQL Language Reference for more information about
handling PL/SQL exceptions

Developing PL/SQL Web Applications

Oracle Multimedia Application Development 2-11

2.3 Developing PL/SQL Web Applications
SQL developers who are familiar with the database can develop Web applications that
exclusively use Oracle Fusion Middleware and Oracle Database using the PL/SQL
development environment. With the PL/SQL development environment, developers
can come quickly up to speed to develop PL/SQL-based Web applications.

Developing Web applications using PL/SQL consists of developing one or more
PL/SQL packages consisting of sets of stored procedures that interact with Web
browsers through HTTP. Stored procedures can be executed in several ways:

■ From a hypertext link that calls a stored procedure when it is selected

■ By clicking Submit on an HTML form to denote the completion of a task such as
filling out a form supplied on the HTML page

■ By passing parameters to a stored procedure based on user choices from a list

Information in the stored procedure, such as tagged HTML text, is displayed in the
Web browser as a Web page. These dynamic Web pages are generated by the database
and are based on the database contents and the input parameters passed in to the
stored procedure. Using PL/SQL stored procedures is especially efficient and
powerful for generating dynamic Web page content.

There are two ways of generating HTML output from PL/SQL:

■ Using function calls to generate each HTML tag for output using the PL/SQL Web
Toolkit package that is part of Oracle Fusion Middleware and Oracle Database and
whose owa packages are loaded into a common schema so that all users can access
it

■ Embedding PL/SQL code in Web pages (PL/SQL server pages)

Use Oracle Multimedia when media data such as images, audio, video, or
combinations of all three are to be uploaded into and retrieved from database tables
using the Oracle Multimedia object types and their respective sets of methods.

Media upload procedures first perform a SQL INSERT operation to insert a row of
data in the media table, which also initializes instances of the respective Oracle
Multimedia object columns with an empty BLOB. Next, a SQL SELECT FOR UPDATE
operation selects the object columns for update. Finally, a SQL UPDATE operation
updates the media objects in their respective columns. Oracle Multimedia methods are
called to perform these tasks:

■ Initialize the object columns with an empty BLOB.

■ Set attributes to indicate media data is stored internally in a BLOB.

■ Get values of the object attributes and store them in the object attributes.

■ When exceptions occur, determine the length of the BLOB content and its MIME
type.

Media retrieval operations involve these tasks:

■ Retrieving the object from the database into a local object

■ Checking the cache validity of the object based on its updated time versus that of
the HTTP header time

■ Determining where the media object is located: in the database, in a BFILE, or at a
URL location; then, getting the media, and downloading it for display on an
HTML page

Developing PL/SQL Web Applications

2-12 Oracle Multimedia User's Guide

Oracle Multimedia methods are called to get the time that the media object was last
updated, to determine if the media is stored locally in the database, in a BFILE, or at a
URL location, to get the MIME type of the media object, and finally to retrieve the
media data.

The following subsection describes how to use some Web components of the PL/SQL
development environment:

■ Using the PL/SQL Gateway and PL/SQL Web Toolkit

2.3.1 Using the PL/SQL Gateway and PL/SQL Web Toolkit
Oracle Fusion Middleware and Oracle Database install Oracle HTTP Server powered
by the Apache HTTP server that contains the PL/SQL Gateway to communicate
directly with a client Web browser.

Oracle HTTP Server serves mainly the static HTML files, images, and so on, that a Web
application uses, and is usually located in the file system where Oracle HTTP Server is
installed. Oracle HTTP Server contains modules or plug-ins that extend its functions.
One of these modules supplied by Oracle is the mod_plsql module, also known as the
PL/SQL Gateway. The PL/SQL Gateway serves data dynamically from the database
to Web browsers by calling PL/SQL stored procedures. The PL/SQL Gateway receives
requests from a Web browser in the form of PL/SQL servlets or PL/SQL server pages
that are mapped to PL/SQL stored procedure calls. PL/SQL stored procedures
retrieve data from the database and generate an HTTP response containing the data
and code from the PL/SQL Web Toolkit to display the generated Web page in a Web
browser. The PL/SQL Web Toolkit contains a set of packages called htp, htf, and owa
packages that can be used in the stored procedures to get information about the
request, construct HTML tags, and return header information to the client Web
browser.

Figure 2–1 shows these main components of the PL/SQL development environment,
Oracle HTTP Server (a component of Oracle Fusion Middleware and Oracle Database),
the Web browser, and the database. The following information describes how a client
Web browser request is turned into a Web page response from the execution of the
PL/SQL procedure:

1. A client Web browser sends a PL/SQL server page or servlet request to Oracle
HTTP Server.

2. Oracle HTTP Server routes the request to the PL/SQL Gateway (mod_plsql).

3. The PL/SQL Gateway forwards the request to the database using configuration
information stored in the database access descriptor (DAD) and connects to the
database.

4. The PL/SQL Gateway prepares the call parameters and invokes the PL/SQL
package and the PL/SQL stored procedure in the application.

5. The PL/SQL procedure generates an HTML page using data from the database
and special packages in the PL/SQL Web Toolkit accessed from the database. The
PL/SQL Web Toolkit contains a set of packages called htp, htf, and owa
packages that are used in the stored procedures to get information about the
request, construct HTML tags, and return header information back to the client
Web browser as the response returned to the PL/SQL Gateway.

6. The PL/SQL Gateway sends the response to Oracle HTTP Server.

7. Oracle HTTP Server sends the response to the client Web browser for display as a
formatted Web page.

Developing PL/SQL Web Applications

Oracle Multimedia Application Development 2-13

Figure 2–1 Components of the PL/SQL Development Environment

Usually, the returned formatted Web page has one or more additional links, and each
link, when selected, sends another request to the database through the PL/SQL
Gateway to execute one or more stored procedures. The generated response displays
data on the client Web page usually with additional links, which, when selected,
execute more stored procedures that return the generated response for display as yet
another formatted Web page, and so on. This is how the PL/SQL application in the
PL/SQL development environment is designed to work.

Web application developers who use the PL/SQL development environment, create a
PL/SQL package specification and body that describe procedures and functions that
comprise the application. The package specification defines the procedures and
functions used by the application, and the package body is the implementation of each
procedure and function. All packages are compiled and stored in the database to
perform specific operations for accessing data in the database and formatting HTML
output for Web page presentation. To invoke these stored PL/SQL procedures, Web
application developers use the request/response PL/SQL servlets and PL/SQL server
pages (PSP) to enable Web browser clients to send requests and get back responses
using HTTP.

Oracle HTTP Server maps a URL entered in a browser to a specific PL/SQL procedure
stored in the database. It does this by storing specific configuration information in a
DAD for each stored procedure. Thus, each DAD contains the database connection
information that the Web server requires to translate the URL entered into a database
connection to call the stored procedure.

Oracle HTTP Server listens for a request, routes the request to the PL/SQL Gateway,
which forwards it to the database. Configuration information values stored in a DAD
determine the database alias to use, the connection string to use for remote access, the
procedure to use for uploading or downloading documents, and the user name and
password information to enable access to the database. From the Web browser, the
user specifies the URL that invokes the PL/SQL Gateway. The URL has a defined
format for specifying all the required and optional parameters, including the location
of the DAD and the name of the PL/SQL stored procedure to run, as shown in
Example 2–4.

Example 2–4 URL Format to Invoke mod_plsql in a Web Browser

protocol://hostname[:port number]/DAD-name/[[!][schema name.]
 [package name.]procedure_name[?query_string]]

Oracle Database

Application
PL/SQL Stored

Procedures

PL/SQL
Gateway

mod_plsql

DAD File
System

PL/SQL
Web Toolkit

5

4

6

3

7

1 2

Oracle HTTP Server
powered by Apache

Web
Browser

Developing PL/SQL Web Applications

2-14 Oracle Multimedia User's Guide

To use the Oracle Multimedia Photo Album sample application and the PL/SQL Web
Toolkit described in Section 3.1, the URL can be simplified to the format shown in
Example 2–5.

Example 2–5 URL Format to Invoke mod_plsql for the Photo Album Application

protocol://<hostname>[:<port-number>]/DAD-name/]procedure_name

When the URL is entered in the Web browser, it includes the protocol (HTTP or
HTTPS), the name of the hosting Web server, and the port number to which it is
listening to handle requests. Next, the specified virtual path includes
/pls/<DAD-name> to indicate that the Web server is configured to invoke mod_plsql,
and the location of the DAD on the Web server.

In Example 2–4, the last five parameters include the exclamation point (!) character,
schema name, package name, procedure name, and query string. From the syntax, the
exclamation point, schema name, package name, and query string parameters are
optional; only the procedure name is required.

The exclamation point indicates that flexible parameter passing is being used. The
schema name, if omitted, is resolved based on the user name. The package name, if
omitted, means the procedure is standalone. The query string parameters are for the
stored procedure and follow a special format. Of these five parameters, the procedure
name must be specified in both the DAD and the URL. The other four parameters are
specified in either the DAD or the URL, or not at all, depending on the application.

The URL displays the home page for the specified DAD. When the URL is entered in
the address field of the Web browser page, it invokes either the specified DAD location
only, or the specified DAD location along with the procedure name, or the specified
DAD location along with the schema.package.procedure name. The response is
returned as an HTML page. The HTML page contains the requested data and any
other specified code for display in the client's Web browser. The Code Wizard
described in Chapter 4 demonstrates how this operation works. For example, to
invoke the Code Wizard administration URL, enter the following URL shown in that
chapter:

http://<hostname>:<port-number>/pls/ordcwadmin

The virtual path includes pls to indicate that the Web server is configured to invoke
mod_plsql, followed by the name of the DAD used for the Code Wizard administrator,
ordcwadmin.

When the HTML page is displayed, it resolves to the following URL for the Code
Wizard administrator:

http://<hostname>:<port-number>/pls/ordcwadmin/ORDCWPKG.menu

ORDCWPKG.menu represents the package.procedure name, which is specified as
the default home page in the ordcwadmin DAD.

When the PL/SQL Gateway is invoked, it uses the stateless model and does not
permit a transaction to span across multiple HTTP requests. In this stateless model,
applications typically can create a session to maintain state by using one of these

See Also:

Oracle Fusion Middleware User’s Guide for mod_plsql in the Oracle Fusion
Middleware Online Documentation Library for a detailed description
of each parameter and the available options

Developing Java Client Applications Using JDBC

Oracle Multimedia Application Development 2-15

techniques: HTTP cookies, a hidden HTML field as an HTML form element of the
HTML Form package, or storage of vital information in database tables for query.

2.4 Developing Java Client Applications Using JDBC
Developers who are familiar with Java and Java database connectivity (JDBC) can
write media-rich Java applications using Oracle Multimedia Java API. The classes in
Oracle Multimedia Java API are the Java proxy classes for Oracle Multimedia database
objects. These Java classes provide access to Oracle Multimedia database objects
through JDBC in a Java application.

The Java classes in Oracle Multimedia Java API are included in the
oracle.ord.im.* package. These Java classes are named similarly to the Oracle
Multimedia database objects, and in compliance with the standard Java naming
convention:

■ OrdAudio

■ OrdDoc

■ OrdImage

■ OrdVideo

Developers who write medical imaging applications can use Oracle Multimedia
DICOM Java API and Oracle Multimedia Mid-Tier Java API. In Oracle Multimedia
DICOM Java API, the OrdDicom class provides access to Oracle Multimedia DICOM
database objects in a Java application. The classes in Oracle Multimedia Mid-Tier Java
API enable developers to write Java applications for extracting DICOM metadata
outside of Oracle Database.

The examples in this section use the sample schemas, which may be installed when
you install Oracle.

The following subsections describe how to use various components of the Java
development environment with JDBC:

■ Setting Up Your Environment for Java

■ Media Retrieval in Java

■ Media Upload in Java

■ Handling Oracle Multimedia Exceptions in Java

See Also:

Oracle Database Advanced Application Developer's Guide for more
information about PL/SQL Web applications

Developing Java Client Applications Using JDBC

2-16 Oracle Multimedia User's Guide

2.4.1 Setting Up Your Environment for Java
Before you can begin using any of the Java APIs provided by Oracle Multimedia, you
must set up your environment to compile and run Java programs.

Follow these steps:

1. Specify the environment variable CLASSPATH, and ensure that this variable
includes the appropriate Oracle Java archive (JAR) files for the Oracle Multimedia
features and any other features that you intend to use.

For each Oracle JAR file, Table 2–1 lists the name of the file and its contents, the
Oracle Multimedia and other features that require it, and details about the JDK
version, the platform, and the path name under the <ORACLE_HOME> directory
where you can obtain it.

See Also:

■ Oracle Multimedia Java API Reference for details about the available
classes and methods in this Java API

■ Oracle Multimedia DICOM Java API Reference for details about the
available classes and methods in this Java API

■ Oracle Multimedia Mid-Tier Java API Reference for details about
the available classes and methods in this Java API

■ Oracle Multimedia DICOM Developer's Guide for more information
about Oracle Multimedia DICOM features and enhancements

■ Oracle Database Sample Schemas for information about how the
sample schemas were created and how you can use them

Table 2–1 Java Archive Files for Oracle Multimedia

Oracle JAR File and Contents Required By JDK Version, Platform, and Location

Name: ordim.jar

Description:

Oracle Multimedia Java proxy classes

All Oracle Multimedia features JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/ordim.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\ord\jlib\ordim.jar

Name: ojdbc5.jar

Description:

Oracle JDBC library

All Oracle Multimedia features JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/jdbc/lib/ojdbc5.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\jdbc\lib\ojdbc5.jar

Name: xdb.jar

Description:

Oracle XDB Java classes library

DICOM feature

Oracle Multimedia metadata
extraction

JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/rdbms/jlib/xdb.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\rdbms\jlib\xdb.jar

Developing Java Client Applications Using JDBC

Oracle Multimedia Application Development 2-17

Name: xmlparserv2.jar

Description:

Oracle XML Parser library

DICOM feature

Oracle Multimedia metadata
extraction

Mid-Tier Java API feature

JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/lib/xmlparserv2.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\lib\xmlparserv2.jar

Name: orddcmmt.jar

Description:

Oracle Multimedia Mid-Tier Java classes

Mid-Tier Java API feature JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/orddcmmt.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\ord\jlib\orddcmmt.jar

Name: ordimdcm.jar

Description:

Oracle Multimedia DICOM Java library

Mid-Tier Java API feature JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/ordimdcm.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\ord\jlib\ordimdcm.jar

Name: orddicom.jar

Description:

Oracle Multimedia DICOM Java proxy
classes

DICOM feature JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/orddicom.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\ord\jlib\orddicom.jar

Name: ordhttp.jar

Description:

Oracle Multimedia Servlets and JSP Java
HTTP classes

Java servlets and JavaServer
Pages (JSP) applications

JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/ordhttp.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\ord\jlib\ordhttp.jar

Name: ordjsptag.jar

Description:

Oracle Multimedia JSP Tag Library

(Optional)

JavaServer Pages (JSP)
applications

JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/ord/jlib/ordjsptag.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\ord\jlib\ordjsptag.jar

Name: orai18n.jar

Description:

NLS Character Set Conversion library

 (Optional)

NLS character set conversion
required1

JDK 5 or later, on Linux and UNIX:

<ORACLE_HOME>/jlib/orai18n.jar

JDK 5 or later, on Windows:

<ORACLE_HOME>\jlib\orai18n.jar

Table 2–1 (Cont.) Java Archive Files for Oracle Multimedia

Oracle JAR File and Contents Required By JDK Version, Platform, and Location

Developing Java Client Applications Using JDBC

2-18 Oracle Multimedia User's Guide

2. Add one or more of the following import statements to the Java program:

Along with the standard JDBC classes included in the java.sql package, you
must also import the Oracle JDBC extension class
oracle.jdbc.OracleResultSet, as follows:

import oracle.jdbc.OracleResultSet;

Based on the type of media to be handled in the Java application, you might also
have to add one or more of following import statements:

import oracle.ord.im.OrdAudio;
import oracle.ord.im.OrdDoc;
import oracle.ord.im.OrdImage;
import oracle.ord.im.OrdVideo;

2.4.2 Media Retrieval in Java
Oracle Multimedia objects can be retrieved into Java applications as Java proxy objects
to the Oracle Multimedia database objects with the same names: OrdAudio, OrdDoc,
OrdImage, and OrdVideo. After the JDBC connection is established, follow these steps
to retrieve Oracle Multimedia Java objects:

1. Create the JDBC statement to select Oracle Multimedia objects from the database:

String query = "select product_photo, product_audio,"+
 " product_video, product_testimonials from" +
 " pm.online_media where product_id=3117";
PreparedStatement pstmt = conn.prepareStatement(query);

2. Execute the query and obtain the result set:

OracleResultSet rset = (OracleResultSet)pstmt.executeQuery();

3. Retrieve the Oracle Multimedia Java object from the result set:

if (rset.next())
{

1 If NLS character set conversion is required between the client application and the database, you must include the
orai18n.jar file in the CLASSPATH variable. If NLS character set conversion is required, but the appropriate library is not
specified, character-based attributes of Oracle Multimedia object types may be returned as hexadecimal-encoded strings. See
Oracle Database JDBC Developer’s Guide for more information about NLS character set conversion.

Note: If you are using the JDBC OCI driver, specify the location of
the JDBC OCI shared library in one of these variables:

■ LD_LIBRARY_PATH (for Linux or UNIX)

■ PATH (for Windows)

Depending on your platform, store the JDBC OCI shared library at
one of these locations under the <ORACLE_HOME> directory:

<ORACLE_HOME>/lib (for libocijdbc11.so on Linux and UNIX)
<ORACLE_HOME>\bin (for ocijdbc11.dll on Windows)

Because this library path is shared, it may have been specified
previously to enable the use of other client applications, such as
SQL*Plus.

Developing Java Client Applications Using JDBC

Oracle Multimedia Application Development 2-19

 OrdImage imgProxy = (OrdImage)rset.getORAData(
 "product_photo", OrdImage.getORADataFactory());
 OrdAudio audProxy = (OrdAudio)rset.getORAData(
 "product_audio", OrdAudio.getORADataFactory());
 OrdVideo vidProxy = (OrdVideo)rset.getORAData(
 "product_video", OrdVideo.getORADataFactory());
 OrdDoc docProxy = (OrdDoc)rset.getORAData(
 "product_testimonials",
 OrdDoc.getORADataFactory());
}

4. Retrieve the media attributes. Media attributes can be retrieved directly from
Oracle Multimedia Java objects. For example:

int height = imgProxy.getHeight();
int width = imgProxy.getWidth();
String audFormat = audProxy.getFormat();
String vidMimetype = vidProxy.getMimeType();

2.4.3 Media Upload in Java
Follow these steps to upload media data into Oracle Multimedia database objects in a
Java application:

1. Enter this statement to enable the JDBC connection object to set the autocommit
flag to false:

conn.setAutoCommit(false);

2. Retrieve Oracle Multimedia Java objects from the database for updating. You can
load media data into existing Oracle Multimedia objects in a table or into
nonexisting Oracle Multimedia objects by creating a new row in a table.

The following example includes a query you can use to load media data into
existing Oracle Multimedia objects in a table.

//"for update" is required in the query string
//since we will update the row later.
String query1 = "select product_photo," +
" product_audio, product_video," +
" product_testimonials from" +
" pm.online_media where product_id=3106" +
" for update";

PreparedStatement pstmt = conn.prepareStatement(query1);

OracleResultSet rset = (OracleResultSet)pstmt.executeQuery();

if (rset.next())
{

Note: In Oracle Multimedia release 8i and release 9i, the
getCustomDatum method is used to retrieve the Oracle Multimedia
Java objects. In Oracle JDBC release 10g, the getCustomDatum method
was deprecated and replaced by the getORAData method.

In your Java program environment, be sure to use the same version
for both the Oracle Multimedia Java Client library (ordim.jar) and
the Oracle JDBC library.

Developing Java Client Applications Using JDBC

2-20 Oracle Multimedia User's Guide

 OrdImage imgProxy = (OrdImage)rset.getORAData(
 "product_photo", OrdImage.getORADataFactory());
 OrdAudio audProxy = (OrdAudio)rset.getORAData(
 "product_audio", OrdAudio.getORADataFactory());
 OrdVideo vidProxy = (OrdVideo)rset.getORAData(
 "product_video", OrdVideo.getORADataFactory());
 OrdDoc docProxy = (OrdDoc)rset.getORAData(
 "product_testimonials",
 OrdDoc.getORADataFactory());
}

rset.close();
pstmt.close();

The following example includes a query you can use to load media data into
nonexisting Oracle Multimedia objects by creating a new row.

String query2 =
 "begin insert into pm.online_media " +
 " (product_id, product_photo, product_audio," +
 " product_video, product_testimonials) values" +
 " (3106, ordimage.init()," +
 " ordaudio.init(), ordvideo.init()," +
 " orddoc.init()) returning product_photo," +
 " product_audio, product_video," +
 " product_testimonials into ?, ?, ?, ?;end;";

OracleCallableStatement cstmt =
 (OracleCallableStatement) conn.prepareCall(query2);
cstmt.registerOutParameter(1, OrdImage._SQL_TYPECODE,
 OrdImage._SQL_NAME);
cstmt.registerOutParameter(2, OrdAudio._SQL_TYPECODE,
 OrdAudio._SQL_NAME);
cstmt.registerOutParameter(3, OrdVideo._SQL_TYPECODE,
 OrdVideo._SQL_NAME);
cstmt.registerOutParameter(4, OrdDoc._SQL_TYPECODE,
 OrdDoc._SQL_NAME);

cstmt.execute();

OrdImage imgProxy = (OrdImage)cstmt.getORAData(1,
 OrdImage.getORADataFactory());
OrdAudio audProxy = (OrdAudio)cstmt.getORAData(2,
 OrdAudio.getORADataFactory());
OrdVideo vidProxy = (OrdVideo)cstmt.getORAData(3,
 OrdVideo.getORADataFactory());
OrdDoc docProxy = (OrdDoc)cstmt.getORAData(4,
 OrdDoc.getORADataFactory());

cstmt.close();

3. Load the media data from a file to the Oracle Multimedia Java objects by calling
the loadDataFromFile method:

String imageFileName = "laptop.jpg";
String audioFileName = "laptop.mpa";

Note: This code segment assumes that there is no row with
product_id=3106 in the pm.online_media table.

Developing Java Client Applications Using JDBC

Oracle Multimedia Application Development 2-21

String videoFileName = "laptop.rm";
String docFileName = "laptop.jpg";
imgProxy.loadDataFromFile(imageFileName);
audProxy.loadDataFromFile(audioFileName);
vidProxy.loadDataFromFile(videoFileName);
docProxy.loadDataFromFile(docFileName);

4. Set the properties of the Oracle Multimedia objects by populating the Java object
fields with media attributes (optional):

imgProxy.setProperties();
audProxy.setProperties(new byte[1][64]);
vidProxy.setProperties(new byte[1][64]);
docProxy.setProperties(new byte[1][64], true);

5. Update the database table with Oracle Multimedia Java objects that have data
already loaded:

 String query3 = "update pm.online_media set" +
 " product_photo=?, product_audio=?," +
 " product_video=?, product_testimonials=?" +
 " where product_id=3106";
 OraclePreparedStatement pstmt =
 (OraclePreparedStatement)conn.prepareStatement(query3);
 pstmt.setORAData(1, imgProxy);
 pstmt.setORAData(2, audProxy);
 pstmt.setORAData(3, vidProxy);
 pstmt.setORAData(4, docProxy);

 pstmt.execute();
 pstmt.close();

6. Commit the transaction:

conn.commit();

2.4.4 Handling Oracle Multimedia Exceptions in Java
Possible errors that can occur during run time should always be handled in your
application. This practice enables the program to continue its operation even when it
encounters a run-time error. This practice also enables users to know what went wrong
during program operation. Proper error handling practices ensure that, whenever
possible, you are always able to recover from an error while running an application. In
addition, proper error handling provides you with the information you need so you
always know what went wrong.

This section demonstrates proper error handling practices using code examples. These
examples show how to handle some common Oracle Multimedia errors and other
types of errors in Java programs. These examples are extracted from the Java sample
applications that are described in Chapter 3 and Chapter 5. (See Oracle Multimedia
Reference for more examples.)

Note: The setProperties method tries to recognize the format of the
media and populate the objects field with media information such as
image height, image width, format, MIME type, and so on. If the
media format is not recognized, the java.sql.SQLException error is
thrown.

Developing Java Client Applications Using JDBC

2-22 Oracle Multimedia User's Guide

When handling exceptions, Java uses the try/catch block. For example, in Java, the
exception can appear as:

try {
 //<some program logic>)
}
catch (exceptionName a) {
//Exception logic
}
finally {
//Execute logic if try block is executed even if an exception is caught
}

When you design, code, and debug your application, you are aware of the places in
your program where processing might stop due to a failure to anticipate an error.
Those are the places in your program where you must add exception handling blocks
to handle the potential errors.

The examples in this section describe exception handling using the try/catch block.
These examples are included in the Oracle Multimedia Java API sample application,
the Oracle Multimedia Java Servlet Photo Album application, and the Oracle
Multimedia JavaServer Pages Photo Album application.

The following subsections provide additional details and examples of exception
handling in Java:

■ Handling the Setting of Properties for Unknown Image Formats in Java

■ Handling Image Processing for Unknown Image Formats in Java

2.4.4.1 Handling the Setting of Properties for Unknown Image Formats in Java
The IMUtil class of the Oracle Multimedia Java API sample application contains
utility methods for common image functions. One of these methods is the
setProperties() method. The static method takes an OrdImage object as an input
parameter and calls the setProperties() method on the object.

static boolean setProperties(OrdImage img)
 {
 try
 {
 img.setProperties();
 return true;
 }
 catch (SQLException e)
 {
 return false;
 }
 }

If an exception is thrown, the setProperties() method returns false to indicate failure;
otherwise it returns true. See Chapter 5 for a full description of the Oracle Multimedia
Java API sample application, and for more information about using the setProperties()
method in a Java application.

See Also:

■ Oracle Database Java Developer's Guide for more information about
handling Java exceptions

■ Oracle Database JDBC Developer's Guide for more information about
handling Java exceptions using JDBC

Developing Java-Based Web Applications

Oracle Multimedia Application Development 2-23

2.4.4.2 Handling Image Processing for Unknown Image Formats in Java
In the insertNewPhoto() method in both the PhotoAlbumServlet class of the Oracle
Multimedia Java Servlet Photo Album application and in the PhotoAlbumBean class
of the Oracle Multimedia JavaServer Pages Photo Album application, a new
photograph is inserted into the photo album, creating a thumbnail image at the same
time. If the application tries to process an image in cases when the image format is
unknown, then when the application calls the processCopy() method, the application
always fails. To work around this potential problem, the application uses the following
try block and catch block to catch any SQL exceptions:

 try
 {
 image.processCopy("maxScale=50,50", thumb);
 }
 catch (SQLException e)
 {
 thumb.deleteContent();
 thumb.setContentLength(0);
 }

In this example, when the image format is unknown and a thumbnail image cannot be
created, the application catches the SQL exception and calls the deleteContent()
method to delete the content of the thumbnail image, and then calls the
setContentLength() method to set its length to zero.

2.5 Developing Java-Based Web Applications
On the Java platform, a Web application is a dynamic extension of a Web server. A
Java-based Web application is composed of Java servlets, JSP pages, or both. Java
servlets are Java classes that dynamically process HTTP requests and construct HTTP
responses. JSP pages are text-based documents that execute as servlets, but enable a
more natural approach to creating static content.

Oracle Multimedia Servlets and JSP Java API is based on Oracle Multimedia Java API.
The classes in Oracle Multimedia Servlets and JSP Java API facilitate the retrieval and
uploading of media data from and to Oracle Database in a Java-based Web application.

The Java classes in Oracle Multimedia Servlets and JSP Java API are included in the
oracle.ord.im.* package. The classes are as follows:

■ OrdHttpResponseHandler

■ OrdHttpJspResponseHandler

■ OrdHttpUploadFormData

■ OrdHttpUploadFile

■ OrdMultipartFilter

■ OrdMultipartWrapper

The OrdHttpResponseHandler class facilitates the retrieval of the media data from
Oracle Database and its delivery to an HTTP client from a Java servlet. The
OrdHttpJspResponseHandler class provides the same features for JSP pages. The
OrdHttpUploadFormData, OrdHttpUploadFile, OrdMultipartFilter, and
OrdMultipartWrapper classes facilitate the uploading of media data from a Web client
to Oracle Database.

Developing Java-Based Web Applications

2-24 Oracle Multimedia User's Guide

Before you can begin using Oracle Multimedia Servlets and JSP Java API, you must set
up your environment with the appropriate Java libraries, as described in Step 1,
Section 2.4.1.

The following subsections describe how to use various components of the Java
development environment for Web applications:

■ Media Retrieval in Java-Based Web Applications

■ Media Upload in Java-Based Web Applications

2.5.1 Media Retrieval in Java-Based Web Applications
In general, displaying a Web page that contains images in a Web browser requires two
HTTP round trips.

In the first trip, the Web browser makes an HTTP request to the URL of the Web page
that contains the images. The Web server responds with the Web page text content and
the URLs for the media content. The URL is the src attribute of the tag in the
Web page.

In the second trip, the Web browser makes another HTTP request to the URL in the
 tag to get the image binary data, and then displays the image in the browser.

In a Java-based Web application, sending media data from the database to an HTTP
client (Web browser) requires the proper media URL (generated in the first HTTP
response); and the proper media delivery component (a servlet or JSP for the second
HTTP response).

The following subsections provide additional details and examples of this process:

■ Media URL

■ Media Delivery Component

2.5.1.1 Media URL
When media data is stored as static files on the Web server, the media URL is the
relative or absolute path to the media files on the file system. When media data is
stored in a database, the media URL is generally composed of a media delivery
component (a servlet or JSP) and the parameters for the media delivery component.
The media delivery component is the target for the second HTTP request to retrieve
the media data. The parameters for the media delivery component are used by the
media delivery component to query and locate the media data in the database. For
example:

where OrdGetMedia.jsp in the media URL "OrdGetMedia.jsp?id=1" is the
media delivery component, and id=1 is the parameter to the media delivery
component.

2.5.1.2 Media Delivery Component
Because media data is stored in the database as Oracle Multimedia objects, the media
delivery component must dynamically retrieve the media data as Java objects (see
Section 2.4.2), based on certain query conditions. Then, you can use either the

See Also:

Oracle Multimedia Servlets and JSP Java API Reference for details about
the available classes and methods in this Java API

Developing Java-Based Web Applications

Oracle Multimedia Application Development 2-25

OrdHttpResponseHandler or the OrdHttpJspResponsehandler class in Oracle
Multimedia Servlets and JSP Java API to deliver the data to the HTTP client (Web
browser).

The following example demonstrates the use of a Java servlet as the media delivery
component, and highlights in bold the SQL statements and significant areas in the
code where this operation takes place.

import oracle.ord.im.OrdHttpResponseHandler;

protected void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, java.io.IOException
{
// obtain oracle.ord.im.OrdImage object
// imgProxy follows the Section "Media Retrieval in Java"
 . . .

// deliver the image data to the browser
OrdHttpResponseHandler handler =
new OrdHttpResponseHandler(request, response);
handler.sendImage(imgProxy);

 . . .
 }

The following example demonstrates the use of a JSP page as the media delivery
component, and highlights in bold the SQL statements and significant areas in the
code where this operation takes place.

<%@ page
import="oracle.ord.im.OrdHttpJspResponseHandler"
%>

<jsp:useBean id = "handler" scope="page"
 class = "oracle.ord.im.OrdHttpJspResponseHandler"
/>

<%
// obtain oracle.ord.im.OrdImage object
// imgProxy follows the Section "Media Retrieval in Java"
. . .

// deliver the image data to the browser
 handler.setPageContext(pageContext);
 handler.sendImage(imgProxy);
 return;
%>

2.5.2 Media Upload in Java-Based Web Applications
The HTML form enables you to input and upload data from a Web browser to a Web
server for processing. The following HTML code segment is an example of the HTML
form that uploads a file. This code example highlights in bold the SQL statements and
areas in the code where this operation takes place.

<form action="uploadAction.jsp" method="post"
enctype="multipart/form-data">
id: <input type="text" name="id"/>
description: <input type="text" name="description"/>
Photo: <input type="file" name="photo"/>

Developing Java-Based Web Applications

2-26 Oracle Multimedia User's Guide

</form>

Referring to the preceding code example, setting the value of the enctype attribute in
the <form> tag to "multipart/form-data" specifies multipart/form-data format
encoding of the uploaded data. The value of the action attribute in the <form> tag
represents the name of the JSP that handles the uploaded data.

To handle the uploaded data in a JSP or servlet, follow these steps:

1. Decode the uploaded file. Because this file is encoded in multipart/form-data
format, the data must be decoded before further processing can proceed. You can
use the OrdHttpUploadFormData class to decode the encoded HTTP request data
and obtain the uploaded file as an instance of the OrdHttpUploadFile object. You
can use this class explicitly or implicitly to get the decoded uploaded file.

The following example demonstrates how to use the OrdHttpUploadFormData
class explicitly to get the uploaded file, and highlights in bold the SQL statements
and significant areas in the code where this operation takes place. Use this method
within the servlet or JSP that handles the upload HTTP request.

//
// Import OrdHttpUploadFormData and OrdHttpUploadFile class:
// In a servlet:
// import oracle.ord.im.OrdHttpUploadFormData;
// import oracle.ord.im.OrdHttpUploadFile;
// In a JSP:
// <%@ page import="oracle.ord.im.OrdHttpUploadFormData" %>
// <%@ page import="oracle.ord.im.OrdHttpUploadFile" %>
//

//
// Following code snippets should be within <% %> if in a JSP.
//

// Create an OrdHttpUploadFormData object and use it to parse
// the multipart/form-data message.
//
OrdHttpUploadFormData formData = new OrdHttpUploadFormData(
 request);
formData.parseFormData();

//
// Get the description, location, and photo.
//
String id = formData.getParameter("id");
String description = formData.getParameter("description");
OrdHttpUploadFile photo = formData.getFileParameter("photo");

//
// Process the uploaded file.
//
 ...

//
// Release the resources.
//
formData.release();

To avoid instantiating and releasing the OrdHttpUploadFormData class explicitly
in each JSP or servlet that handles the uploaded data, you can use the
OrdHttpUploadFormData class implicitly by configuring the Web application

Developing Java-Based Web Applications

Oracle Multimedia Application Development 2-27

with the OrdMultipartFilter class. Using the OrdMultipartFilter class ensures that
any HTTP request that is encoded in multipart/form-data format is decoded and
passed along to the JSP or servlet that further processes the request.

The following substeps and accompanying examples describe how to use the
OrdHttpUploadFormData class implicitly to get the uploaded file. These code
examples highlight in bold the SQL statements and significant areas in the code
where this operation takes place.

a. Configure the filter by adding this code to the web.xml file in your Web
application:

<filter>
 <filter-name>OrdMultipartFilter</filter-name>
 <filter-class>
oracle.ord.im.OrdMultipartFilter
 </filter-class>
</filter>
<filter-mapping>
 <filter-name>OrdMultipartFilter</filter-name>
 <servlet-name>*.jsp</servlet-name>
</filter-mapping>

b. Obtain the form data and the uploaded file in the JSP or servlet after the filter
is configured:

//
// Get the id, description, and photo.
//
String id = request.getParameter("id");
String description = request.getParameter("description");
 oracle.ord.im.OrdHttpUploadFile photoFile =
 request.getFileParameter("photo");

where request is the HttpServletRequest object passed to the JSP or servlet.

2. Save the uploaded file to the database. After the OrdHttpUploadFile object is
obtained by explicitly or implicitly using the OrdHttpUploadFormData class, the
uploaded file is ready to be loaded into an Oracle Multimedia object in the
database, using this statement:

photoFile.loadImage(imgProxy);

where photoFile is the OrdHttpUploadFile object andimgProxy is an
OrdImage object obtained in Step 1 in Section 2.4.3.

The loadImage method implicitly calls the setProperties method to populate the
object fields.

After the data is loaded into the Oracle Multimedia Java object, you can update the
corresponding Oracle Multimedia object in the database table by following Steps 4
and 5 in Section 2.4.3.

Developing Java-Based Web Applications

2-28 Oracle Multimedia User's Guide

3

Oracle Multimedia Photo Album Sample Applications 3-1

3Oracle Multimedia Photo Album Sample
Applications

This chapter describes media upload and retrieval Web applications using Oracle
Multimedia object types, using these distinct Oracle Multimedia Photo Album sample
Web applications:

■ Oracle Multimedia PL/SQL Photo Album Sample Application uses the PL/SQL
Gateway and PL/SQL Web Toolkit for Oracle Fusion Middleware and Oracle
Database (see Section 3.1 on page 3-2)

■ Oracle Multimedia Java Servlet Photo Album Sample Application uses the Oracle
Multimedia Servlets and JSP Java API (see Section 3.2 on page 3-23)

■ Oracle Multimedia JSP Photo Album Sample Application uses the Oracle
Multimedia Servlets and JSP Java API (see Section 3.3 on page 3-32)

This chapter assumes the following:

■ You are familiar with:

– Developing PL/SQL applications using the PL/SQL Gateway and PL/SQL
Web Toolkit

– Developing Java-based Web applications using JDBC, creating Java source
code, compiling it into byte code (.class) files, and deploying class files into
respective servlet containers required by Oracle HTTP Server for Oracle
Fusion Middleware and Oracle Database

■ You have installed and configured these sample applications:

– Oracle Multimedia PL/SQL Web Toolkit Photo Album application

– Oracle Multimedia Java Servlet Photo Album application

– Oracle Multimedia JSP Photo Album application

See the README.txt file for each respective sample application for installation and
configuration information.

More Sample Applications
See these chapters for more sample applications:

Chapter 4 describes the Oracle Multimedia Code Wizard sample application, a media
upload and retrieval Web application for the PL/SQL Gateway.

Chapter 5 describes the Oracle Multimedia Java API sample application. This sample
application lets you retrieve, save, play, and delete multimedia data from the Oracle

Oracle Multimedia PL/SQL Photo Album Sample Application

3-2 Oracle Multimedia User's Guide

Database sample schemas using Oracle Multimedia Java classes and Oracle
Multimedia object types.

3.1 Oracle Multimedia PL/SQL Photo Album Sample Application
The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application
demonstrates how to perform the following operations:

■ Use the Oracle Multimedia image object type to upload, retrieve, and process
media data stored in Oracle Database.

■ Combine the image metadata methods of Oracle Multimedia with the XML
document management capabilities of Oracle XML DB and the full-text indexing
and search features of Oracle Text to create a solution that can extract, store, and
search metadata that is embedded in binary image files.

■ Collect new metadata from a user, format the metadata into an XML document,
and store the document in the binary image.

When installed, this photo album application creates several schema objects that are
important to the following discussion. These objects include the photos table, which
is defined by the following CREATE TABLE statement:

CREATE TABLE photos(id NUMBER PRIMARY KEY,
 description VARCHAR2(40) NOT NULL,
 metaORDImage XMLTYPE,
 metaEXIF XMLTYPE,
 metaIPTC XMLTYPE,
 metaXMP XMLTYPE,
 image ORDSYS.ORDIMAGE,
 thumb ORDSYS.ORDIMAGE)
--
-- store full-size and thumbnail images as SecureFile LOBS
--
LOB(image.source.localdata) STORE AS SECUREFILE
LOB(thumb.source.localdata) STORE AS SECUREFILE
--
-- and bind the XMLType columns to the Oracle Multimedia metadata schemas
XMLType COLUMN metaORDImage
 STORE AS SecureFile CLOB
 XMLSCHEMA "http://xmlns.oracle.com/ord/meta/ordimage"
 ELEMENT "ordImageAttributes"
XMLType COLUMN metaEXIF
 STORE AS SecureFile CLOB
 XMLSCHEMA "http://xmlns.oracle.com/ord/meta/exif"
 ELEMENT "exifMetadata"
XMLType COLUMN metaIPTC
 STORE AS SecureFile CLOB
 XMLSCHEMA "http://xmlns.oracle.com/ord/meta/iptc"
 ELEMENT "iptcMetadata"
XMLType COLUMN metaXMP
 STORE AS SecureFile CLOB
 XMLSCHEMA "http://xmlns.oracle.com/ord/meta/xmp"
 ELEMENT "xmpMetadata";

The data types for the image and thumb columns are defined as Oracle Multimedia
image object types. These columns are used to store the full-size images and the
generated thumbnail images, respectively. The LOB storage clauses direct the database
to store the full-size and thumbnail images in SecureFile LOBs, which are the highest
performing storage option for binary data.

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-3

The table also defines four columns of type XMLType to store XML documents that
contain four different kinds of image metadata. Each column is bound to a specific
Oracle Multimedia metadata schema. Each metadata schema defines precisely the data
model of the metadata document. These schemas are registered with Oracle XML DB
when the database is created. The column definitions specify that the database uses
unstructured storage to manage the XML metadata documents. Some advantages of
using unstructured storage to manage XML include fast retrieval of the complete
document and the ability to use XMLIndex indexes to improve the performance of
XPath-based queries.

When installed, this photo album application also creates other schema objects. These
schema objects include two types of indexes that accelerate metadata searches: a
CONTEXT text index and an XMLIndex index.

The CONTEXT type is a text index over all columns that contain descriptive
information about the image. These columns include PHOTOS.DESCRIPTION, which
is a VARCHAR2 data type, and these four XMLType columns: PHOTOS.METAIPTC,
PHOTOS.METAEXIF, PHOTOS.METAXMP, and PHOTOS.METAORDIMAGE. The
CONTEXT text index is used to accelerate metadata searches by implementing the
photo album search feature that enables users to search for photographs by keyword
or phrase.

The CONTEXT text index is created by the following statements. (This example
assumes that this photo album application has been installed in the SCOTT schema.)

-- Create preference PA_CTXIDX.
ctx_ddl.create_preference('SCOTT.PA_CTXIDX', 'MULTI_COLUMN_DATASTORE');

-- Create a multicolumn datastore.
ctxcols := 'description, ' ||
 'SCOTT.photo_album.getClob(METAIPTC), ' ||
 'SCOTT.photo_album.getClob(METAEXIF), ' ||
 'SCOTT.photo_album.getClob(METAXMP), ' ||
 'SCOTT.photo_album.getClob(METAORDIMAGE)';
ctx_ddl.set_attribute(ctxpref, 'COLUMNS', ctxcols);

-- Create the CONTEXT text index.
create index pa_ctx_idx on photos(description)
indextype is ctxsys.context
parameters ('DATASTORE SCOTT.PA_CTXIDX');

The XMLIndex index is used to accelerate metadata searches by permitting users to
search only certain types of image metadata and limiting the search to specific
portions of an XML document. For example, the following statements create three
indexes of type XMLIndex to speed up existsNode() queries on columns of type
XMLType:

create index pa_path_iptc_idx on photos(metaIptc)
 indextype is XDB.XMLIndex;

create index pa_path_exif_idx on photos(metaExif)
 indextype is XDB.XMLIndex;

create index pa_path_xmp_idx on photos(metaXMP)
 indextype is XDB.XMLIndex;

During the installation, as prescribed by the PL/SQL Gateway, a document upload
table is defined by the following CREATE TABLE statement:

Oracle Multimedia PL/SQL Photo Album Sample Application

3-4 Oracle Multimedia User's Guide

CREATE TABLE PHOTOS_UPLOAD(name VARCHAR2(256) UNIQUE NOT NULL,
 mime_type VARCHAR2(128),
 doc_size NUMBER,
 dad_charset VARCHAR2(128),
 last_updated DATE,
 content_type VARCHAR2(128),
 blob_content BLOB)
--
-- store BLOBs as SecureFile LOBs
--
LOB(blob_content) STORE AS SECUREFILE;

Each image uploaded using the PL/SQL Gateway is stored in the PHOTOS_UPLOAD
table. An upload procedure (insert_new_photo) automatically moves the uploaded
image from the specified PHOTOS_UPLOAD table to the photo album applications table
called photos.

After installing the Oracle Database Examples media, the sample application files and
README.txt file are located at:

<ORACLE_HOME>/ord/http/demo/plsqlwtk (on Linux and UNIX)

<ORACLE_HOME>\ord\http\demo\plsqlwtk (on Windows)

See the README.txt file for additional requirements and instructions on installing
and using this sample application.

The following subsections provide more information about the PL/SQL Photo Album
application:

■ Running the PL/SQL Photo Album Application

■ Description of the PL/SQL Photo Album Application

3.1.1 Running the PL/SQL Photo Album Application
After you have completed the setup tasks and have built the PL/SQL Photo Album
application, including creating a database access descriptor (DAD) entry (as described
in the README.txt file), you are ready to run this application.

In the address field of your Web browser, enter the following URL:

<protocol><hostname:port-number>/photoalbum

1. In the <protocol> field, enter http://.

2. In the <hostname:port-number> field, enter the host name and port number of
the system where your HTTP server is running.

When first invoked, this photo album application displays any images that are
currently stored in the album. By default, the photo album is empty when first
installed. To upload a new photograph, select Upload photo. Enter a description of the
photograph and the name of the image file, or browse to its directory location. Then,
click Upload photo.

See Also:

■ Oracle XML DB Developer's Guide for more information about XML
DB and XMLIndex indexes

■ Oracle Text Application Developer's Guide for more information
about creating and using text indexing

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-5

The contents of the photo album are displayed, along with a picture of the new
photograph. Click the thumbnail image to view the full-size version of the
photograph. When this photo album application displays the text view image instead
of its thumbnail image, the image format that was uploaded was not recognized by
Oracle Multimedia. Click view image to display the full-size image.

You can now begin to load your photo album application with your favorite
photographs.

3.1.2 Description of the PL/SQL Photo Album Application
The PL/SQL Photo Album application is implemented as a set of PL/SQL procedures
and functions, organized in a single PL/SQL package. These procedures combine
several database features to create the application. Oracle Multimedia is used to store
and process image data. It is also used to extract metadata from images and embed
new metadata into images. The XMLType feature is used to store and process the XML
metadata documents. Oracle Text indexes are used to accelerate two kinds of metadata
searches. Finally, the PL/SQL Web Toolkit is used to create HTML pages and deliver
media content.

The user interface for the PL/SQL Photo Album application consists of a set of Web
pages. You can use these Web pages to perform the tasks shown in Table 3–1. The tasks
and the Web pages are introduced in this section and described in further detail in the
following sections.

Table 3–1 PL/SQL Photo Album Sample Application Overview

User Task Web Page PL/SQL Procedures

Browsing the photo album
Section 3.1.2.1

View album
Figure 3–1

view_album
Example 3–1

print_album
Example 3–2

print_image_link
Example 3–3

deliver_media
Example 3–4

Adding images to the photo album
Section 3.1.2.2

Upload photo
Figure 3–2

view_upload_form

print_upload_form
Example 3–5

insert_new_photo
Example 3–6

Searching for images by keyword or
phrase
Section 3.1.2.3

Search album
Figure 3–3

view_album
Example 3–1

print_album
Example 3–2

Viewing full-size images
Section 3.1.2.4

View entry
Figure 3–4

view_entry
Example 3–7

print_image_link
Example 3–3

deliver_media
Example 3–4

Oracle Multimedia PL/SQL Photo Album Sample Application

3-6 Oracle Multimedia User's Guide

You can explore this photo album application using the navigation bar near the top of
each Web task page. The leftmost entry of the navigation bar displays the name of the
current Web page. On the right, there are links to other Web pages you can access from
the current page. Each Web task page contains a link to the View album page, which is
the home page for the application.

Pages in the PL/SQL Photo Album Sample Application
The following subsections,which are summarized here, describe each page in the
PL/SQL Photo Album application:

■ Browsing the Photo Album

Use the View album page to display thumbnail-size versions of all the images in
the photo album and a description link positioned under each thumbnail image.
When you select a thumbnail image, the full-size image is displayed. When you
select the description link for an image, all the metadata for that image is
displayed. The View album page is the home page for the application.

■ Adding Images to the Photo Album

Use the Upload photo page to display a simple form to collect a description for a
new image, and the directory path to the location of the image on the local
computer. When you click the Upload photo button, the browser sends the image
to the Web server and the image is stored in the database.

■ Searching for Images by Keyword or Phrase

Use the Search album page to display a search album form to collect keywords or
phrases to initiate full-text searches through all image metadata. The application
queries the database for all images with metadata that contains the specified
keywords or phrases. The search results are displayed as a set of thumbnail
images. The search album form is also available from the View album page.

■ Viewing Full-Size Images

Use the View entry page to display the full-size image of a specified photograph,
including any description text that was entered for that image when it was
uploaded.

■ Examining Image Metadata

Use the View metadata page to display all the metadata that was extracted from
the image when it was uploaded. Up to four types of metadata can be displayed.

■ Writing New XMP Metadata to Images

Examining image metadata
Section 3.1.2.5

View metadata
Figure 3–5

view_metadata
Example 3–8

print_metadata
Example 3–9

Writing new XMP metadata to
images
Section 3.1.2.6

Write XMP metadata
Figure 3–6

write_metadata
Example 3–10

Searching for images that contain
specific metadata attributes
Section 3.1.2.7

Search metadata
Figure 3–7

search_metadata
Example 3–11

Table 3–1 (Cont.) PL/SQL Photo Album Sample Application Overview

User Task Web Page PL/SQL Procedures

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-7

Use the Write XMP metadata page to display a form to collect input for five
metadata attributes. These attributes are formatted into an XML document that is
embedded within the binary image. The new XMP metadata overwrites any
existing XMP metadata.

■ Searching for Images That Contain Specific Metadata Attributes

Use the Search metadata page to collect input and perform advanced metadata
searches. You can specify the type of metadata to be searched. Optionally, you can
also limit the search to a specific XML tag within the specified document. The
search results are displayed as a set of thumbnail images.

3.1.2.1 Browsing the Photo Album
The home page for this photo album application, View album, displays the contents of
the photo album as thumbnail images in four-column format. Each thumbnail image is
also a link to the View entry page. When you click a thumbnail image link, the
application displays the full-size image on a View entry page. Included under each
thumbnail image on the View album page is the image description that was entered
when the image was uploaded to the album. The description is also a link to the View
metadata page where all the metadata for this photograph can be examined.

Near the top of the View album page, there is a text entry field (in the shape of a
rectangular box) that accepts user input for a full-text search through all the photo
album metadata. The Search button to the right of the text field initiates the search.
The search results are displayed on the Search album page, which is discussed in
Section 3.1.2.3.

At the top of the View album page, there is a navigation bar, which includes links to
other photo album pages. From the View album page, you can navigate to the Search
metadata page or the Upload photo page. These pages are described in Section 3.1.2.7
and Section 3.1.2.2, respectively.

Figure 3–1 shows the View album page for an album that contains several images.

Figure 3–1 View album Page with Uploaded Images

See Also:

■ Oracle XML DB Developer's Guide

■ Oracle Text Application Developer's Guide

■ Oracle Database Advanced Application Developer’s Guide

Oracle Multimedia PL/SQL Photo Album Sample Application

3-8 Oracle Multimedia User's Guide

The PL/SQL procedures view_album, print_album, print_image_link, and
deliver_media are the primary application components that implement the View
album page. The view_album procedure is a public procedure that takes a single
optional argument. By default, the argument has a NULL value. Or, it can have the
value of the string entered in the text entry field on the Search album page. When the
search argument is NULL, the SELECT statement retrieves the id,description, and
thumb columns for all entries in the photos table. When the search string is not NULL,
the SELECT statement uses the CONTAINS operator to restrict the result set to only
images with metadata that matches the search string. (Section 3.1 describes how the
application creates a multicolumn text index over the four XMLType columns
PHOTOS.METAIPTC, PHOTOS.METAEXIF, PHOTOS.METAXMP, and
PHOTOS.METAORDIMAGE as well as the PHOTOS.DESCRIPTION column.)

Example 3–1 contains some relevant lines of code in the view_album procedure.

Example 3–1 Procedure view_album

 --
 -- no search criteria so fetch all entries
 --
 IF search IS NULL THEN
 OPEN album_cur FOR
 SELECT id, description, thumb
 FROM photos
 ORDER BY id;
 print_album(album_cur, 'The photo album is empty.');
 CLOSE album_cur;
 ELSE
 -- -- use the full-text index to select entries matching the search criteria
 --
 OPEN album_cur FOR
 SELECT id, description, thumb
 FROM photos
 WHERE CONTAINS(description, trim(search)) > 0
 ORDER BY id;
 print_album(album_cur, 'No photos were found.');
 CLOSE album_cur;
 END IF;

The SELECT statement is bound to the cursor variable album_cur and passed to the
procedure print_album, which creates the HTML output.

The print_album procedure uses the HTP and HTF packages from the PL/SQL Web
Toolkit to create the HTML tags that format the output into a four-column table. Each
cell in the table contains two links or anchor tags. The first link is to the View entry
page, which displays the full-size version of the image. This anchor is implemented by
PHOTO_ALBUM.VIEW_ENTRY, and passes entry_id as a query string input
argument. If the thumbnail image has a nonzero length, then procedure print_
image_link is called to create an HTML tag that is the content (the thumbnail
image) of the anchor link. The string thumb and the entry_id are passed to
procedure print_image_link, along with the image description, and the height and
width of the thumbnail image. These values are used to create the tag.

If an image is in a format that Oracle Multimedia does not support, the application
cannot create a thumbnail version of the image. In this case, the content of the anchor
link is the text view image.

Example 3–2 contains some relevant lines of code in the print_album procedure.

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-9

Example 3–2 Procedure print_album

 -- escape the description text
 sc_description := htf.escape_sc(entry.description);

 --
 -- Display the thumbnail image as an anchor tag which can be used
 -- to display the full-size image. If the image format is not
 -- supported by Oracle Multimedia, then a thumbnail would not have been
 -- produced when the image was uploaded, so use the text '[view
 -- image]' instead of the thumbnail.
 --

 htp.print('<td headers="c' || colIdx || '" align="center" >
 <a href="PHOTO_ALBUM.VIEW_ENTRY?entry_id=' ||
 entry.id || '">');
 IF entry.thumb.contentLength > 0
 THEN
 print_image_link('thumb', entry.id, sc_description,
 entry.thumb.height, entry.thumb.width);
 ELSE
 htp.prn('[view image]');
 END IF;
 htp.print('');

 -- Create link to the metadata
 htp.prn('
');
 htp.anchor(curl=>'PHOTO_ALBUM.VIEW_METADATA?entry_id=' || entry.id,
 ctext=>sc_description);
 htp.prn('</td>');

The procedure print_image_link uses the height and width arguments to
populate the height and width attributes of the tag. The description
argument is used to create text for the alt attribute. If the description argument is
empty, a default string is constructed. Finally, the src attribute is set to the URL
PHOTO_ALBUM.DELIVER_MEDIA with two query string arguments, media and
entry_id. The media argument controls whether the thumbnail or full-size version
of the image is delivered. The entry_id argument identifies the image to be
delivered.

Example 3–3 contains some relevant lines of code in the print_image_link
procedure.

Example 3–3 Procedure print_image_link

 -- add height and width to tag if non zero
 IF height > 0 AND width > 0 THEN
 attributes := attributes || ' height=' || height || ' width=' || width;
 END IF;

 -- create an alt text if none given
 IF alt IS NULL THEN
 IF type = 'thumb' THEN
 alt2 := 'thumb-nail image ';
 ELSE
 alt2 := 'full-size image ';
 END IF;
 alt2 := alt2 || 'for album entry ' || entry_id;
 ELSE
 alt2 := alt;
 END IF;

Oracle Multimedia PL/SQL Photo Album Sample Application

3-10 Oracle Multimedia User's Guide

 htp.img(curl=>'PHOTO_ALBUM.DELIVER_MEDIA?media=' || type ||
 ampersand || 'entry_id=' || entry_id,
 calt=>alt2, cattributes=>attributes);

The procedure deliver_media fetches the image content from the database. The
If-Modified-Since HTTP request header is compared to the last modification time
of the image. If the image has not been modified, a response is sent that the browser
can display the image from its cache. Otherwise, the image MIME type and last
modified time are sent to the Web server, along with the image content.

Example 3–4 contains some relevant lines of code in the deliver_media procedure.

Example 3–4 Procedure deliver_media

 --
 -- Fetch the thumbnail or full-size image from the database.
 --
 IF media = 'thumb'
 THEN
 SELECT thumb INTO local_image FROM photos WHERE id = entry_id;
 ELSE
 SELECT image INTO local_image FROM photos WHERE id = entry_id;
 END IF;

 --
 -- Check update time if browser sent If-Modified-Since header
 --
 IF ordplsgwyutil.cache_is_valid(local_image.getUpdateTime())
 THEN
 owa_util.status_line(ordplsgwyutil.http_status_not_modified);
 RETURN;
 END IF;

 --
 -- Set the MIME type and deliver the image to the browser.
 --
 owa_util.mime_header(local_image.mimeType, FALSE);
 ordplsgwyutil.set_last_modified(local_image.getUpdateTime());
 owa_util.http_header_close();

 IF owa_util.get_cgi_env('REQUEST_METHOD') <> 'HEAD' THEN
 wpg_docload.download_file(local_image.source.localData);
 END IF;

3.1.2.2 Adding Images to the Photo Album
The Upload photo page is used to add new images to the photo album. The page
displays a form with two text entry fields. In the Description: field, you can optionally
enter a word or short phrase that describes the image. In the File name: field, enter the
name of the image file or click Browse... to locate the image file to be uploaded. The
Upload photo button under the File name: field starts the upload operation. When the
image is successfully uploaded, the View album page appears. From that page, you
can display the contents of the photo album, as described in Section 3.1.2.1.

At the top of the Upload photo page, there is a navigation bar, which includes links to
other photo album pages. From the Upload photo page, you can return to the View
album page or select the Search metadata page. These pages are described in
Section 3.1.2.1 and Section 3.1.2.7, respectively.

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-11

Figure 3–2 shows an Upload photo page with all the entry fields completed.

Figure 3–2 Completed Upload photo Page

The PL/SQL procedures view_upload_form, print_upload_form, and insert_
new_photo are the primary application components that implement the Upload
photo page. Together, view_upload_form and print_upload_form create the HTML
page that is displayed. The page contains a form tag, a portion of which is shown in
Example 3–5. The target of the form is PHOTO_ALBUM.INSERT_NEW_PHOTO.

Example 3–5 contains some relevant lines of code in the print_upload_form
procedure.

Example 3–5 Procedure print_upload_form

<form action="PHOTO_ALBUM.INSERT_NEW_PHOTO"
method="post"
enctype="multipart/form-data">
database.

Procedure insert_new_photo receives the form, processes the inputs, and stores the
new image in the database.

First, the insert_new_photo procedure checks that a file name was entered into the
upload form. The image size, MIME type, and BLOB locator for the image content are
selected from the document upload table, and the size is checked to ensure that the
image is not of zero length. If the description field is blank, a description is created
using the file name.

Next, the ORDSYS.ORDIMAGE.INIT() function is called to initialize the thumb and
image ORDImage object type columns with an empty BLOB for the new row to be
stored in the photos table. A SQL SELECT FOR UPDATE statement fetches the newly
initialized thumbnail image and full-size image object type columns for updating. A
DBMS_LOB.COPY operation loads the image from the upload table into the image
ORDImage object type column.

The ORDImage object method setProperties() reads the image and sets the image
object attributes. Because some browsers cannot display some image formats inline, in
this sample application, BMP formatted images are converted to a JPEG image format
(for images with more than 8 bits of color), or a GIFF image format (for images with
less than 9 bits of color) by calling the get_preferred_format function. A
processCopy() operation is performed on the full-size image to create the thumbnail
image.

The ORDImage object getMetadata() method is called to extract all supported types of
image metadata. The root element of each XML document in the return vector is

Oracle Multimedia PL/SQL Photo Album Sample Application

3-12 Oracle Multimedia User's Guide

examined to discover the metadata type so that the documents can be stored in the
correct columns.

Then, a SQL UPDATE statement stores the full-size image, the thumbnail image, and
the image metadata documents in the database. Procedure sync_indexes is called to
force an update of the text indexes. Finally, the form data input is deleted from the
document upload table. A success message is returned to the browser, and the browser
is redirected to the View album page.

Example 3–6 contains some relevant lines of code in the insert_new_photo
procedure.

Example 3–6 Procedure insert_new_photo

 --
 -- Make sure a file name has been provided. If not, display an error
 -- message, then re-display the form.
 --
 IF new_photo IS NULL OR LENGTH(new_photo) = 0
 THEN
 print_page_header;
 print_error('Please supply a file name.');
 print_upload_form;
 print_page_trailer(TRUE);
 return;
 END IF;

 --
 -- Get the length, MIME type and the BLOB of the new photo from the
 -- upload table.
 --
 SELECT doc_size,
 mime_type,
 blob_content
 INTO upload_size,
 upload_mime_type,
 upload_blob
 FROM photos_upload
 WHERE name = new_photo;

 --
 -- Make sure we have a valid file.
 --
 IF upload_size = 0
 THEN
 print_page_header;
 print_heading('Error message');
 htp.print('<hr size="-1"><p>Please supply a valid image file.</p>');
 print_upload_form;
 print_page_trailer(TRUE);
 return;
 END IF;

 --
 -- If the description is blank, then use the file name.
 --
 IF c_description IS NULL
 THEN
 c_description := new_photo;
 pos := INSTR(c_description, '/', -1);
 IF pos > 0

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-13

 THEN
 c_description := SUBSTR(c_description, pos + 1);
 END IF;
 c_description := SUBSTR('Image from file: ' ||
 c_description || '.', 1, 40);
 END IF;
 --
 -- Insert a new row into the table, returning the newly allocated sequence
 -- number.
 INSERT INTO photos (id, description, metaExif, metaIPTC, metaXMP,
 image, thumb)
 VALUES (photos_sequence.nextval, c_description, NULL, NULL, NULL,
 ORDSYS.ORDIMAGE.INIT(), ORDSYS.ORDIMAGE.INIT())
 RETURN id
 INTO new_id;

 --
 -- Fetch the newly initialized full-size and thumbnail image objects.
 --
 SELECT image,
 thumb
 INTO new_image,
 new_thumb
 FROM photos
 WHERE id = new_id
 FOR UPDATE;

 --
 -- Load the photo from the upload table into the image object.
 --
 DBMS_LOB.COPY(new_image.source.localData, upload_blob, upload_size);
 new_image.setLocal();
 --
 -- Set the properties. If the image format is not recognized, then
 -- the exception handler will set the MIME type and length from the
 -- upload table.
 --
 BEGIN
 new_image.setProperties();
 EXCEPTION
 WHEN OTHERS THEN
 new_image.contentLength := upload_size;
 new_image.mimeType := upload_mime_type;
 END;

 --
 -- Some image formats are supported by Oracle Multimedia but cannot be
 -- displayed inline by a browser. The BMP format is one example.
 -- Convert the image to a GIF or JPEG based on number of colors in the
 -- image.
 --
 IF new_image.contentFormat IS NOT NULL AND
 (new_image.mimeType = 'image/bmp' OR
 new_image.mimeType = 'image/x-bmp')
 THEN
 BEGIN
 new_image.process(
 'fileFormat=' ||
 get_preferred_format(new_image.contentFormat));
 EXCEPTION

Oracle Multimedia PL/SQL Photo Album Sample Application

3-14 Oracle Multimedia User's Guide

 WHEN OTHERS THEN
 NULL;
 END;
 END IF;

 --
 -- Try to copy the full-size image and process it to create the thumbnail.
 -- This may not be possible if the image format is not recognized.
 --
 BEGIN
 new_image.processCopy(thumb_scale, new_thumb);
 EXCEPTION
 WHEN OTHERS THEN
 new_thumb.deleteContent();
 new_thumb.contentLength := 0;
 END;
 --
 -- fetch the metadata and sort the results
 --
 BEGIN
 metav := new_image.getMetadata('ALL');
 FOR i IN 1..metav.count() LOOP
 meta_root := metav(i).getRootElement();
 CASE meta_root
 WHEN 'ordImageAttributes' THEN xmlORD := metav(i);
 WHEN 'xmpMetadata' THEN xmlXMP := metav(i);
 WHEN 'iptcMetadata' THEN xmlIPTC := metav(i);
 WHEN 'exifMetadata' THEN xmlEXIF := metav(i);
 ELSE NULL;
 END CASE;
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 NULL;
 END;

 --
 -- Update the full-size and thumbnail images in the database.
 -- Update metadata columns
 --
 UPDATE photos
 SET image = new_image,
 thumb = new_thumb,
 metaORDImage = xmlORD,
 metaEXIF = xmlEXIF,
 metaIPTC = xmlIPTC,
 metaXMP = xmlXMP
 WHERE id = new_id;

 -- -- update the text indexes
 -- sync_indexes;

 --
 -- Delete the row from the upload table.
 --
 DELETE FROM photos_upload WHERE name = new_photo;
 COMMIT;

 --
 -- Redirect browser to display full album.

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-15

 -- print_page_header(
 '<meta http-equiv="refresh" content="2;url=PHOTO_ALBUM.VIEW_ALBUM">');
 print_heading('Photo successfully uploaded into photo album');

3.1.2.3 Searching for Images by Keyword or Phrase
You can use the View album and Search album pages to perform a keyword or phrase
search of the metadata stored in the photo album. On either of these pages, enter the
keyword or phrase in the Full text search: text entry field and click Search. This photo
album application uses the CONTEXT text index to locate images that have metadata
containing the text you entered. If the search is successful, the thumbnail versions of
the matching images are displayed in a four-column table. Select the thumbnail image
to view the full-size version, or select the description link below the thumbnail image
to view the metadata for the image. If the search fails, the message "No photos were
found" is displayed.

At the top of the Search album page, there is a navigation bar, which includes links to
other photo album pages. From the Search album page, you can return to the View
album page or select the Search metadata or Upload photo pages. These pages are
described in Section 3.1.2.1, Section 3.1.2.7, and Section 3.1.2.2, respectively.

Figure 3–3 shows a Search album page that contains the results of a successful search
operation.

Figure 3–3 Search album Page Showing Results

Full-text searching of the photo album is implemented by the view_album procedure.
See Section 3.1.2.1 for a discussion of this procedure.

3.1.2.4 Viewing Full-Size Images
When you select a thumbnail image, the application directs you to the View entry
page. This page displays the description of the image and the full-size version of the
image.

At the top of the View entry page, there is a navigation bar, which includes links to
other photo album pages. From the View entry page, you can return to the View
album page, or select any of the View metadata, Write metadata, Search metadata, or
Upload photo pages. These pages are described in Section 3.1.2.1, Section 3.1.2.5,
Section 3.1.2.6, Section 3.1.2.7, and Section 3.1.2.2, respectively.

Figure 3–4 shows a View entry page that contains the description and the full-size
version of an image.

Oracle Multimedia PL/SQL Photo Album Sample Application

3-16 Oracle Multimedia User's Guide

Figure 3–4 View entry Page with a Full-Size Image

The PL/SQL procedures view_entry, print_image_link, and deliver_media
are the primary application components that implement the View entry page. The
procedure view_entry takes a single parameter, entry_id, which uniquely locates
the image in the photos table. The description and image object are fetched from the
photos table. The procedure print_image_link creates the HTML tag, and
then calls procedure deliver_media to fetch the image content. See Section 3.1.2.1
for more information about the print_image_link and deliver_media
procedures.

Example 3–7 contains some relevant lines of code in the view_entry procedure.

Example 3–7 Procedure view_entry

 --
 -- Fetch the row.
 --
 BEGIN
 SELECT htf.escape_sc(description), image
 INTO sc_description, photo
 FROM photos
 WHERE id = entry_id;
 EXCEPTION
 WHEN no_data_found THEN
 print_error('Image ' || htf.escape_sc(entry_id) ||
 ' was not found.</p>');
 print_page_trailer(TRUE);
 return;
 END;

 print_image_link('image', entry_id, sc_description,
 photo.height, photo.width);

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-17

3.1.2.5 Examining Image Metadata
You can use the View metadata page to examine all the metadata for a specific image.
Typically, you access this page from the View album page by selecting the description
link below a thumbnail image. You can also access this page by selecting the View
metadata link from the navigation bar. The View metadata page displays the
thumbnail version of the image. To the right of the thumbnail image, there is a list of
the metadata documents for this image. Each entry in the list is a link that takes you to
the metadata document on the View metadata page.

At the top of the View metadata page, there is a navigation bar, which includes links
to other photo album pages. From the View metadata page, you can return to the
View album page, or select any of the View entry, Write metadata, Search metadata,
or Upload photo pages. These pages are described in Section 3.1.2.1, Section 3.1.2.4,
Section 3.1.2.6, Section 3.1.2.7, and Section 3.1.2.2, respectively.

Figure 3–5 shows a View metadata page that contains two types of metadata (XMP
and ORDIMAGE) for an image.

Figure 3–5 View metadata Page with Metadata for an Uploaded Image

The PL/SQL procedures view_metadata and print_metadata are the primary
application components that implement the View metadata page. The procedure
view_metadata is passed the argument entry_id, which uniquely identifies the
image in the photos table. A SELECT statement retrieves all the XMLtype metadata
columns for the specified entry. If the metadata column is not NULL, procedure
print_metadata is called to display the XML document inside an HTML <pre> tag.

Example 3–8 contains some relevant lines of code in the view_metadata procedure.

Example 3–8 Procedure view_metadata

 --
 -- Fetch the row.
 --
 SELECT metaOrdImage, metaEXIF, metaIPTC, metaXMP
 INTO metaO, metaE, metaI, metaX
 FROM photos

Oracle Multimedia PL/SQL Photo Album Sample Application

3-18 Oracle Multimedia User's Guide

 WHERE id = entry_id;

 -- display the EXIF metadata
 IF metaE IS NOT NULL THEN
 htp.print('EXIF');
 htp.print('
<pre>');
 print_metadata(metaE); htp.print('</pre>');
 END IF;

The print_metadata procedure accepts an XMLType document as an argument. It
uses the getClobVal() method to access the document as a CLOB. The content of the
CLOB is read in a loop and formatted in the HTML page using the htp.prints
procedure. The htp.prints procedure escapes the '<' and '>' characters so that they
are rendered properly by the Web browser.

Example 3–9 contains some relevant lines of code in the print_metadata procedure.

Example 3–9 Procedure print_metadata

 metaClob := meta.getClobVal();
 len := dbms_lob.getLength(metaClob);
 IF bufSize > len THEN
 bufSize := len;
 END IF;
 WHILE len > 0 LOOP
 dbms_lob.read(metaClob, bufSize, pos, buf);
 htp.prints(buf);
 pos := pos + bufSize;
 len := len - bufSize;
 END LOOP;

3.1.2.6 Writing New XMP Metadata to Images
You can use the Write XMP metadata page to write new or replace existing XMP
metadata in an image. Oracle Multimedia provides support for writing XMP metadata
only. You can access the Write XMP metadata page by selecting the Write metadata
link in the navigation bar from either the View entry page or the View metadata page.

The Write XMP metadata page displays the thumbnail version of the image to be
modified. The page also displays an input form to collect metadata attributes in these
five text entry fields:

■ Title: Specify a title for the photograph.

■ Creator: Enter the name of the person who took the photograph. This field is
optional.

■ Date: Enter the date the photograph was taken. This field is optional.

■ Description: Enter a description, such as the subject of the photograph. This field
is optional.

■ Copyright: Enter the month and year when the photograph was taken. This field
is optional.

Click Write it! to send the form to the application and embed the metadata in XMP
format in the image.

At the top of the Write XMP metadata page, there is a navigation bar, which includes
links to other photo album pages. From the Write XMP metadata page, you can return
to the View album page, or select any of the View entry, View metadata, Search

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-19

metadata, or Upload photo pages. These pages are described in Section 3.1.2.1,
Section 3.1.2.4, Section 3.1.2.5, Section 3.1.2.7, and Section 3.1.2.2, respectively.

Figure 3–6 shows a Write XMP metadata page with completed entries for an image.

Figure 3–6 Completed Write XMP metadata Page with XMP Metadata for an Uploaded Image

The PL/SQL procedure write_metadata receives the form input fields from the
browser. The procedure creates an XML document (as a string buffer) that is valid to
the Oracle Multimedia XMP schema http://xmlns.oracle.com/ord/meta/xmp.
The string buffer is used to create an XMLType object.

A SELECT FOR UPDATE statement retrieves the image to be modified. The Oracle
Multimedia method putMetadata() is called to embed the XML document into the
image. The modified image is stored back to the photos table. Finally, procedure
sync_indexes is called to update the text indexes.

Example 3–10 contains some relevant lines of code in the write_metadata
procedure.

Example 3–10 Procedure write_metadata

 -- Create the XMP packet it must be schema valid
 -- to "http://xmlns.oracle.com/ord/meta/xmp"
 -- and contain an <RDF> element. This example uses
 -- the Dublin Core schema as implemented by Adobe XMP
 buf := '<xmpMetadata xmlns="http://xmlns.oracle.com/ord/meta/xmp"
 xsi:schemaLocation="http://xmlns.oracle.com/ord/meta/xmp
 http://xmlns.oracle.com/ord/meta/xmp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>' || htf.escape_sc(title) || '</dc:title>';

 IF c_creator IS NOT NULL THEN
 buf := buf || '<dc:creator>' || htf.escape_sc(c_creator)
 || '</dc:creator>';
 END IF;
 IF c_date IS NOT NULL THEN
 buf := buf || '<dc:date>' || htf.escape_sc(c_date)
 || '</dc:date>';
 END IF;
 IF c_description IS NOT NULL THEN
 buf := buf || '<dc:description>' || htf.escape_sc(c_description)

Oracle Multimedia PL/SQL Photo Album Sample Application

3-20 Oracle Multimedia User's Guide

 || '</dc:description>';
 END IF;
 IF c_copyright IS NOT NULL THEN
 buf := buf || '<dc:copyright>' || htf.escape_sc(c_copyright)
 || '</dc:copyright>';
 END IF;
 buf := buf || '
 </rdf:Description>
 </rdf:RDF>
 </xmpMetadata>';

 xmp := XMLType.createXML(buf, 'http://xmlns.oracle.com/ord/meta/xmp');

 -- -- select image for update
 -- description is selected to force update of CTX index
 --
 SELECT image, description
 INTO img, des
 FROM photos
 WHERE id = entry_id
 FOR UPDATE;

 --
 -- write the metadata
 --
 img.putMetadata(xmp, 'XMP');

 --
 -- save updated image and new metadata to table
 -- description updated to force update of CTX index
 --
 UPDATE photos
 SET image = img,
 metaXMP = xmp,
 description = des
 WHERE id = entry_id;

 -- update the text indexes
 sync_indexes;

The input data shown in Example 3–10 would result in the storage of the following
metadata in the image:

<xmpMetadata xmlns="http://xmlns.oracle.com/ord/meta/xmp"
 xsi:schemaLocation="http://xmlns.oracle.com/ord/meta/xmp
 http://xmlns.oracle.com/ord/meta/xmp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>Story time</dc:title>
 <dc:creator>father</dc:creator>
 <dc:date>July 4, 2001</dc:date>
 <dc:description>family reading</dc:description>
 <dc:copyright>mother</dc:copyright>
 </rdf:Description>
 </rdf:RDF>
</xmpMetadata>

Oracle Multimedia PL/SQL Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-21

3.1.2.7 Searching for Images That Contain Specific Metadata Attributes
You can use the Search metadata page to search a specific metadata type and to limit
your search to a specific tag within a metadata document. You can access the Search
metadata page by selecting the Search metadata link in the navigation bar of any
photo album application Web page.

The Search metadata page displays a form with four fields to define how the search is
to be performed. Use the menu in the Search in metadata: field to select the type of
metadata (EXIF, IPTC, or XMP) to be searched. When this field is changed, the fields
Search in tag: and Search method: are initialized with values that are appropriate to
the type of metadata search.

Use the drop-down list in the Search in tag: field to limit the search to a specific XML
element within a metadata document. The list is populated with element names that
are appropriate for the selected metadata type. When the value --Any tag-- is showing,
the search looks at all elements within the document type. When the XMP metadata
type is selected, searches are limited to Description elements within the parent RDF
element. If the metadata document is properly constructed, selecting RDF/Description
in this field searches all relevant metadata within XMP documents.

In the Search method: field, select Contains to specify a search where an element
contains the search string. Select Equals to specify a search where element values are
matched exactly to the search string. For searches in XMP metadata, only the Contains
search method is available.

Finally, enter a keyword or phrase in the Search string: field and click Search. If the
search is successful, the thumbnail versions of the matching images are displayed in a
four-column table. Select the thumbnail image to view the full-size version of an
image. Or, select the description link below the thumbnail image to view the metadata
for the image. If the search fails, the message "No photos matched the search criteria."
is displayed.

At the top of the Search metadata page, there is a navigation bar, which includes links
to other photo album pages. From the Search metadata page, you can return to the
View album page or select the Upload photo page. These pages are described in
Section 3.1.2.1 and Section 3.1.2.2, respectively.

Figure 3–7 shows a Search metadata page that contains sample search criteria and
results from a successful search operation.

Oracle Multimedia PL/SQL Photo Album Sample Application

3-22 Oracle Multimedia User's Guide

Figure 3–7 Completed Search metadata Page for an Uploaded Image

The PL/SQL procedure search_metadata receives the form input fields from the
Web browser. The search parameters are used to build a query to find images that
contain the desired metadata. The search is accomplished using the SQL function
XMLExists. The XMLExists function is used to search an XML document for content
that matches a given XQuery expression. The function returns TRUE if the document
matched the search, and FALSE otherwise.

For example, assume that the search_metadata procedure receives input that
specifies to search the caption tag in IPTC metadata for an exact match of the word
"farm". The query to accomplish this search is as follows:

 SELECT id, description, thumb
 FROM photos
 WHERE xmlexists('declare default element namespace ' ||
 ' "http://xmlns.oracle.com/ord/meta/iptc"; $x' ||
 '/iptcMetadata[//caption="farm"]' passing metaIptc as "x");

The XPath component of the XQuery expression,
'/iptcMetadata[//caption="farm"]', specifies a search for all <caption>
elements under the root element <iptcMetadata> where the <caption> content is
"farm".

Example 3–11 contains some relevant lines of code in the search_metadata
procedure.

Example 3–11 Procedure search_metadata

 -- Set up search variables for EXIF documents.
 IF mtype = 'exif' THEN
 IF op = 'equals' THEN
 xpath := '/exifMetadata[//' || tag || '="' || c_search || '"]';
 ELSE -- default to contains
 xpath := '/exifMetadata//' || tag ||

See Also:

Oracle XML DB Developer's Guide for more information about the
XMLExists function

Oracle Multimedia Java Servlet Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-23

 '[contains(., "' || c_search || '")]';
 END IF;

 xquery := 'declare default element namespace ' ||
 ' "http://xmlns.oracle.com/ord/meta/exif"; $x' || xpath;

 OPEN album_cur FOR
 SELECT id, description, thumb
 FROM photos
 WHERE xmlexists(xquery passing metaExif as "x");

 -- Set up search variables for IPTC documents.
 ELSIF mtype = 'iptc' THEN
 IF op = 'equals' THEN
 xpath := '/iptcMetadata[//' || tag || '="' || c_search || '"]';
 ELSE -- default to contains
 xpath := '/iptcMetadata//' || tag ||
 '[contains(., "' || c_search || '")]';
 END IF;

 xquery := 'declare default element namespace ' ||
 ' "http://xmlns.oracle.com/ord/meta/iptc"; $x' || xpath;

 OPEN album_cur FOR
 SELECT id, description, thumb
 FROM photos
 WHERE xmlexists(xquery passing metaIptc as "x");

 -- Set up search variables for XMP documents.
 ELSIF mtype = 'xmp' THEN
 -- default to contains
 xpath := '//rdf:Description//*[contains(., "'
 || c_search || '")]';

 -- Add rdf namespace prefix.
 xquery := 'declare namespace rdf = ' ||
 ' "http://www.w3.org/1999/02/22-rdf-syntax-ns#"; ' ||
 'declare default element namespace ' ||
 ' "http://xmlns.oracle.com/ord/meta/xmp"; $x' || xpath;

 OPEN album_cur FOR
 SELECT id, description, thumb
 FROM photos
 WHERE xmlexists(xquery passing metaXMP as "x");

 ELSE
 errorMsg := 'Search domain is invalid: ' || htf.escape_sc(mtype);
 END IF;

 print_search_form(mtype, tag, op, c_search);
 htp.print('<hr size="-1">');
 print_album(album_cur, 'No photos matched the search criteria.');

3.2 Oracle Multimedia Java Servlet Photo Album Sample Application
The Oracle Multimedia Java Servlet Photo Album sample application demonstrates
the use of the Oracle Multimedia Servlets and JSP Java API to upload and retrieve
multimedia data to and from the database. Users access this photo album application
to view the contents of the photo album, including thumbnail versions of each

Oracle Multimedia Java Servlet Photo Album Sample Application

3-24 Oracle Multimedia User's Guide

photograph, to view the full-size version of any photograph, and to upload new
photographs into the album.

This photo album application demonstrates the use of the Oracle Multimedia image
object type to upload and retrieve media data stored in Oracle Database.

When installed, this photo album application creates a table named photos and a
sequence named photos_sequence.

The photos table is described by the following CREATE TABLE statement:

CREATE TABLE photos(id NUMBER PRIMARY KEY,
 description VARCHAR2(40) NOT NULL,
 location VARCHAR2(40),
 image ORDSYS.ORDIMAGE,
 thumb ORDSYS.ORDIMAGE)
--
-- store full-size images and thumbnail images as SecureFile LOBs
--
LOB(image.source.localdata) STORE AS SECUREFILE
LOB(thumb.source.localdata) STORE AS SECUREFILE;

The data type for the image and thumb columns are defined as Oracle Multimedia
image object types to store the full-size images and the generated thumbnail images.

The photos_sequence sequence is defined by the following CREATE SEQUENCE
statement:

CREATE SEQUENCE photos_sequence;

After installing the Oracle Database Examples media, the sample application files and
README.txt file are located at:

<ORACLE_HOME>/ord/http/demo/servlet (on Linux and UNIX)

<ORACLE_HOME>\ord\http\demo\servlet (on Windows)

See the README.txt file for additional requirements and instructions on installing
and using this sample application.

The following subsections provide more information about the Java Servlet Photo
Album application:

■ Running the Java Servlet Photo Album Application

■ Description of the Java Servlet Photo Album Application

3.2.1 Running the Java Servlet Photo Album Application
After you have completed the setup tasks and have built the Java Servlet Photo Album
application, you are ready to run it.

In the address field of your Web browser, enter the URL for the default installation of
Oracle Fusion Middleware or Oracle Containers for Java EE (OC4J) standalone, as
follows:

<protocol><hostname:port-number>/servlet/PhotoAlbumServlet

1. In the <protocol> field, enter http://.

2. In the <hostname:port-number> field, enter the host name and port number of
the system where your HTTP server is running.

Oracle Multimedia Java Servlet Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-25

When first invoked, this photo album application displays any images that are
currently stored in the album. By default, the photo album is empty when first
installed. To upload a new photograph, select Upload new photo. Enter a description
of the photograph, the location where the photograph was taken, and the name of the
image file (or browse to its directory location), then click Upload photo. The contents
of the photo album are displayed along with a picture of the new photograph. Click
the thumbnail image to view the full-size version of the photograph.

When this photo album application displays the text view image instead of its
thumbnail image, the image format that was uploaded was not recognized by Oracle
Multimedia. Click view image to display the full-size image.

You can now begin to load your photo album application with your favorite
photographs.

3.2.2 Description of the Java Servlet Photo Album Application
The Java Servlet Photo Album application combines both business logic and the
presentation into a single servlet, which when compiled, creates two class files,
PhotoAlbumServlet.class and PhotoAlbumRequest.class.

To follow along with the description of tasks, refer to a copy of the
PhotoAlbumServlet.java file, which is available in:

<ORACLE_HOME>/ord/http/demo/servlet (on Linux and UNIX)

<ORACLE_HOME>\ord\http\demo\servlet (on Windows)

PhotoAlbumServlet Class
The PhotoAlbumServlet class performs these tasks:

■ Extends the HttpServlet and contains the user-entered connection information.

public class PhotoAlbumServlet extends HttpServlet

■ Instantiates a Java stack used to implement a simple connection-pooling
mechanism.

private static Stack connStack = new Stack();

■ Defines a flag to indicate whether the JDBC Thin driver has been loaded.

private static boolean driverLoaded = false;

■ Defines a servlet initialization method.

public void init(ServletConfig config) throws ServletException
{
 super.init(config);
}

■ Defines a doGet() method to process an HTTP GET request containing an
HttpServletRequest object and HttpServletResponse object, and instantiates a
PhotoAlbumRequest object to process the request to deliver either a full-size or
thumbnail image to the browser, or to display an upload form or the contents of
the photo album as thumbnail images.

public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 Connection conn = null;

Oracle Multimedia Java Servlet Photo Album Sample Application

3-26 Oracle Multimedia User's Guide

 //
 // Use a try-block to ensure that JDBC connections are always returned
 // to the pool.
 //
 try
 {
 //
 // Get a JDBC connection from the pool.
 //
 conn = getConnection();

 //
 // Instantiate a PhotoAlbumRequest object to process the request.
 //
 PhotoAlbumRequest albumRequest =
 new PhotoAlbumRequest(conn, request, response);

 //
 // Figure out what to do based on query string parameters.
 //
 String view_media = request.getParameter("view_media");
 if (view_media != null)
 {
 //
 // Deliver a full-size or thumbnail image to the browser.
 //
 albumRequest.viewMedia(view_media);
 return;
 }
 else if (request.getParameter("view_form") != null)
 {
 //
 // Display the HTML upload form.
 //
 albumRequest.viewUploadForm();
 }
 else if (request.getParameter("view_entry") != null)
 {
 //
 // Display full-size photo image.
 //
 albumRequest.viewPhoto();
 }
 else
 {
 //
 // Display album contents with thumbnail images by default.
 //
 albumRequest.viewAlbum();
 }
 }
 catch (SQLException e)
 {
 //
 // Log what went wrong.
 //
 e.printStackTrace(System.out);

 //

Oracle Multimedia Java Servlet Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-27

 // Turn SQL exceptions into ServletExceptions.
 //
 throw new ServletException(e.toString());
 }
 finally
 {
 //
 // If we have a JDBC connection, then return it to the pool.
 //
 freeConnection(conn);
 }
}

■ Defines a doPost() method to process an HTTP POST request used to upload a
new photograph into the album by instantiating a PhotoAlbumRequest object to
process the request and then calling the insertNewPhoto() method.

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
{
 Connection conn = null;

 //
 // Use a try-block to ensure that JDBC connections are always returned
 // to the pool.
 //
 try
 {
 //
 // Get a JDBC connection from the pool.
 //
 conn = getConnection();

 //
 // Instantiate a PhotoAlbumRequest object to process the request.
 //
 PhotoAlbumRequest albumRequest =
 new PhotoAlbumRequest(conn, request, response);

 //
 // Insert the photo into the album.
 //
 albumRequest.insertNewPhoto();
 }
 catch (SQLException e)
 {
 //
 // Log what went wrong.
 //
 e.printStackTrace(System.out);

 //
 // Turn SQL exceptions into ServletExceptions.
 //
 throw new ServletException(e.toString());
 }
 finally
 {
 //

Oracle Multimedia Java Servlet Photo Album Sample Application

3-28 Oracle Multimedia User's Guide

 // If we have a JDBC connection, then return it to the pool.
 //
 freeConnection(conn);
 }
}

In summary, the PhotoAlbumServlet class responds to the HTTP GET and POST
requests by allocating a JDBC connection from a connection pool. Each HTTP GET or
POST request is assigned its own JDBC connection from the pool to ensure that
multiple requests can be serviced concurrently. An HTTP GET request is used to
retrieve image data from the photo album, and an HTTP POST request is used to
upload image data into the photo album. Then, an instance of the
PhotoAlbumRequest class is created to execute the request, it executes the request,
then it releases the JDBC connection back to the pool after completing the request.

PhotoAlbumRequest Class
The PhotoAlbumRequest class does the actual processing of an HTTP GET or POST
request, and defines the getPreferredFormat() function and these methods:

viewAlbum()
viewPhoto()
viewMedia()
viewUploadForm()
insertNewPhoto()
printPageHeader()
printPageTrailer()
printMessage()
printHeading()
printLink()

In the viewMedia() and insertNewPhoto() methods, three objects,
OrdHttpResponseHandler, OrdHttpUploadFormData, and OrdHttpUploadFile, are
instantiated. These objects are used to call the methods of the respective
OrdHttpResponseHandler, OrdHttpUploadFormData, OrdHttpUploadFile
classes of Oracle Multimedia Servlets and JSP Java API. For example, in the
viewMedia() method, the OrdHttpResponseHandler object is instantiated and used to
call the sendImage() method as shown in this code:

OrdHttpResponseHandler handler =
 new OrdHttpResponseHandler(request, response);
handler.sendImage(img);

The viewAlbum(), viewPhoto(), viewMedia(), and insertNewPhoto() methods use
the ORAData (formerly getCustomDatum) and ORADataFactory (formerly
getFactory) interfaces supplied by Oracle to get the image or thumbnail OrdImage
object from the result set to obtain height and width information, to retrieve an image
from an OrdImage Java object and deliver it to the browser, and to upload an image in
an OrdImage Java object and to also update it in the photos table. For example, the
following code segment is from the viewAlbum() method:

OrdImage img =
 (OrdImage)rset.getORAData(4, OrdImage.getORADataFactory());
.

See Also:

Oracle Database JDBC Developer’s Guide and Reference for detailed
information about using JDBC connections

Oracle Multimedia Java Servlet Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-29

.

.
out.print("<td headers=\"image\"><a href=\"" + servletUri +
 "?view_entry=yes&id=" + id + "\">");
if (img.getContentLength() > 0)
{
 if (img.getMimeType().startsWith("image/"))
 {
 out.print("<img src=\"" + servletUri +
 "?view_media=thumb&id=" + id + "\"" +
 " height=" + img.getHeight() +
 " width=" + img.getWidth() +
 " alt=\"" + description + "\"" +
 " border=1>");
 }
}
else
{
 out.print("[view image]");
}
out.println("</td>");
out.println("</tr>");

What follows is a more detailed description of each method and what it does:

■ The viewAlbum() method does the following:

– Initializes the row count to zero.

– Writes a common page header on the HTML page using the function
printPageHeader().

– Executes a SELECT statement to fetch all the thumbnail images in the photo
album, order them by description, and display the description and location
information for each along with the thumbnail image if it exists, and returns
the results in a result set.

– Displays the thumbnail images in an HTML table with column headers
labeled Description, Location, and Image.

– Within a while block, reads the contents of the result set by reading the first
row's contents beginning with the id value, displays the description and
location values, then gets the thumbnail OrdImage object and builds the
height and width attributes for each thumbnail image.

– Displays the thumbnail image using an HTML anchor tag that can be used to
display the full-size image. When a user clicks the thumbnail image or view
image, the full-size image is displayed.

– Displays the contents of the photo album within an HTML anchor tag using
the tag <IMG SRC="<servlet-path>?view_media=thumb&id=..."> to
display the thumbnail images, where <servlet-path> is the value of
servletUri. If the thumbnail image was not created because the image
format was not supported by Oracle Multimedia, the text view image is
displayed instead.

– Increments the row count to see if the photo album is empty; if so, it displays
the message "The photo album is empty".

– Displays an HTML anchor tag near the bottom of the HTML page using the
printLink() function with the text Upload new photo.

Oracle Multimedia Java Servlet Photo Album Sample Application

3-30 Oracle Multimedia User's Guide

– Writes a common trailer at the bottom of the HTML page by calling the
printPageHeader() function, however, in this case, sets the Boolean argument
to false to not display the common page trailer.

– Closes the result set and the statement.

■ The viewPhoto() method displays the full-size version of a photograph and does
the following:

– Writes a common page header on the HTML page using the function
printPageHeader().

– Gets the value of the id column for the entry being viewed.

– Executes a SQL SELECT statement to fetch the entry's description, location,
and full-size image where the value of id in the where clause is a parameter
marker and returns the results in a result set.

– Gets the image OrdImage object from the result set so it can later build the
image height and width attributes within the image tag.

– Displays the full-size image in an HTML table beginning with the column
names Description and Location, and displays the entry's values for
these two columns.

– Builds the URL to fetch a full-size image for this entry by using an image tag
<IMG SRC="<servlet-path>?view_media=image&id=..."> to display
an image in the column labeled Photo, where <servlet-path> is the value
of servletUri.

– Displays the full-size images height and width by calling the getHeight() and
getWidth() Oracle Multimedia object methods. If the image format is not
recognized by Oracle Multimedia, height and width values are zero and are
not displayed.

– Writes a common page trailer at the bottom of the HTML page by calling the
printPageHeader() function and setting its Boolean argument to true to
display the common page trailer.

– Closes the result set and the statement.

■ The viewMedia() method is invoked by both thumbnail and full-size image URLs
to retrieve a thumbnail or full-size image from the photos table and deliver it to
the browser using the OrdHttpResponseHandler class. This method does the
following:

– Executes a SQL SELECT statement to fetch either the thumbnail or full-size
image where the value of id in the where clause is a parameter marker and
returns the results in a result set. The SQL SELECT statement is built
dynamically with the string media equating to either the thumbnail image
column or the full-size image column.

– Fetches a row from the result set.

– Gets the OrdImage object from the result set.

– Uses the OrdHttpResponseHandler class to create an
OrdHttpResponseHandler object to retrieve the image from the OrdImage
object and deliver it to the browser using the sendImage() method. The
sendImage() method supports browser content caching by supporting the
If-Modified-Since and Last-Modified headers.

– Closes the result set and the statement.

Oracle Multimedia Java Servlet Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-31

■ The viewUploadForm() method displays an HTML form that enables users to
upload new photographs and does the following:

– Calls the printPageHeader() function to produce the common page header.

– Defines the form action as a multipart/form-data POST request.

– Calls the upload_form_fields static string containing the contents of the
upload form. The upload form is defined as a table with rows labeled
Description and Location, with an input type of text and named
description and location respectively, followed by a row labeled File name:,
with an input type of file and named photo, and finally a row with no
label, an input type of submit, and a value of Upload photo.

– Calls the printPageTrailer() function to produce the common page trailer.

■ The insertNewPhoto() method does the following:

– Uses the OrdHttpUploadFormData class to parse a multipart/form-data
POST request containing an uploaded photograph.

– Uses the OrdHttpUploadFile class to upload the new photograph into the
database.

– Executes a SQL SELECT photos_sequence.nextval statement to get the next
value of the id column for the new row to be inserted into the photos table.

– Executes a SQL INSERT statement to insert a new row in the photos table.

– Executes a SQL SELECT...FOR UPDATE statement to fetch the initialized
full-size and thumbnail image objects from the photos table.

– Calls the loadImage() method in the OrdHttpUploadFile class to populate
an OrdImage object named image with the full-size image and sets the
properties or attribute values of the image object based on the image contents.

– Checks to see what the image format is and if it is an image format that cannot
be displayed inline by a browser, such as a BMP image format, then calls the
getPreferredFormat() method to convert a BMP image format and return the
preferred image format.

– Calls the ProcessCopy() method in the OrdImage class to process the full-size
image, create a thumbnail image, and populate an OrdImage object named
thumb.

– Executes a SQL UPDATE statement to update the full-size and thumbnail
images in the database.

– Displays a photo upload success message and then directs the browser to
refresh the page.

■ A getPreferredFormat() private function, in this sample application, converts a
BMP image format and returns the preferred image file format based on the
number of colors in the image; returns a MONOCHROME image format if there
are no colors, or a JPEG if there are more than 8 colors, or a GIF if there are greater
than 0 and fewer than 8 colors.

■ A printPageHeader() private function displays an HTML header that is common
to all HTML responses.

■ A printPageTrailer() private function displays an HTML trailer that is common to
all HTML responses.

■ A printMessage() private function prints a message on the HTML page.

Oracle Multimedia JSP Photo Album Sample Application

3-32 Oracle Multimedia User's Guide

■ A printHeading() private function prints a header on the HTML page.

■ A printLink() function produces an HTML anchor tag in a standard format.

3.3 Oracle Multimedia JSP Photo Album Sample Application
The Oracle Multimedia JSP Photo Album sample application is a JavaServer Pages
(JSP) application that demonstrates the use of the Oracle Multimedia Servlets and JSP
Java API to upload and retrieve multimedia data to and from a database. Users access
the JSP files that constitute the application to view the contents of the photo album,
including thumbnail versions of each photograph, to view the full-size version of any
photograph, and to upload new photographs into the album.

This photo album application demonstrates the use of the Oracle Multimedia image
object type to upload and retrieve media data stored in Oracle Database.

This photo album application, when installed, creates a table named photos and a
sequence named photos_sequence.

The photos table is described by the following CREATE TABLE statement:

CREATE TABLE photos(id NUMBER PRIMARY KEY,
 description VARCHAR2(40) NOT NULL,
 location VARCHAR2(40),
 image ORDSYS.ORDIMAGE,
 thumb ORDSYS.ORDIMAGE)
--
-- store full-size images and thumbnail images as SecureFile LOBs
--
LOB(image.source.localdata) STORE AS SECUREFILE
LOB(thumb.source.localdata) STORE AS SECUREFILE;

The data type for the image and thumb columns are defined as Oracle Multimedia
image object types to store the full-size images and the generated thumbnail images.

The photos_sequence sequence is defined by the following CREATE SEQUENCE
statement:

CREATE SEQUENCE photos_sequence;

After installing the Oracle Database Examples media, the sample application files and
README.txt file are located at:

<ORACLE_HOME>/ord/http/demo/jsp (on Linux and UNIX)

<ORACLE_HOME>\ord\http\demo\jsp (on Windows)

See the README.txt file for additional requirements and instructions on installing
and using this sample application.

The following subsections provide more information about the JSP Photo Album
application:

■ Running the JSP Photo Album Application

■ Description of the JSP Photo Album Application

3.3.1 Running the JSP Photo Album Application
After you have completed the setup tasks and have built the JSP Photo Album
application, you are ready to run it.

Oracle Multimedia JSP Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-33

In the address field of your Web browser, enter the URL for the default installation of
Oracle Fusion Middleware or Oracle Containers for Java EE (OC4J) standalone, as
follows:

<protocol><hostname:port-number>/demo/PhotoAlbum.jsp

1. In the <protocol> field, enter http://.

2. In the <hostname:port-number> field, enter the host name and port number of
the system where your HTTP server is running.

When first invoked, this photo album application displays any images that are
currently stored in the album. By default, the photo album is empty when first
installed. To upload a new photograph, select Upload new photo. Enter a description
of the photograph, the location where the photograph was taken, and the name of the
image file or browse to its directory location, then click Upload photo. The contents of
the photo album are displayed along with a picture of the new photograph. Click the
thumbnail image to view the full-size version of the photograph.

When this photo album application displays the text view image instead of its
thumbnail image, the image format that was uploaded was not recognized by Oracle
Multimedia. Click view image to display the full-size image.

You can now begin to load your photo album application with your favorite
photographs.

3.3.2 Description of the JSP Photo Album Application
The JSP Photo Album application separates the business logic from the presentation by
having a JavaBean containing methods that are accessed from each of five JSP files.
When compiled, the application creates the PhotoAlbumBean.class file, which
contains the user-entered connection information and defines the functions: getId(),
getDescription(), getLocation(), and getPreferredFormat() and the following
methods:

selectTable()
selectRowById()
fetch()
insertNewPhoto()
release()
getConnection()
freeConnection()
setId()
setDescription()
setLocation()
getImage()
getThumb()

To follow along with the description of tasks, refer to a copy of each JSP file, which is
available in:

<ORACLE_HOME>/ord/http/demo/jsp (on Linux and UNIX)

<ORACLE_HOME>\ord\http\demo\jsp (on Windows)

In the PhotoAlbumEntryViewer, PhotoAlbumMediaViewer, PhotoAlbum, and
PhotoAlbumInsertPhoto JSP files, the jsp:useBean action tag is used to establish
an ID and association with the PhotoAlbumBean class and the
OrdHttpJspResponseHandler and OrdHttpUploadFormData classes of Oracle

Oracle Multimedia JSP Photo Album Sample Application

3-34 Oracle Multimedia User's Guide

Multimedia Servlets and JSP Java API. For example, the following code appears in the
PhotoAlbumInsertPhoto JSP file:

<jsp:useBean id="album" scope="page" class="PhotoAlbumBean"/>
<jsp:useBean id="handler" scope="page"
 class="oracle.ord.im.OrdHttpJspResponseHandler"/>
<jsp:useBean id="formData" scope="page"
 class="oracle.ord.im.OrdHttpUploadFormData"/>

This jsp:useBean action tag is used so these objects can be referenced by their
respective ID values (album, handler, and formData) to call the methods of these
classes.

The OrdHttpUploadFile class of Oracle Multimedia Servlets and JSP Java API is
defined as an object with the name uploadPhoto in the insertNewPhoto() method in
the PhotoAlbumBean.java file and then used to call its loadImage() method to load
the photograph into the photos table as shown in the following code segments:

public void insertNewPhoto(OrdHttpUploadFile uploadPhoto)
 throws SQLException, ServletException, IOException
.
.
.
uploadPhoto.loadImage(image);
.
.
.

The insertNewPhoto() method defined in the PhotoAlbumBean.java file, uses the
ORAData (formerly getCustomDatum) and ORADataFactory (formerly getFactory)
interfaces supplied by Oracle to upload an image and a thumbnail image in an
OrdImage Java object. First, the method executes a SQL SELECT...FOR UPDATE
statement to select the row for update, and then, executes a SQL UPDATE statement to
update the image and thumb columns for that row in the photos table as shown in
the following code segments:

stmt = (OraclePreparedStatement)conn.prepareStatement(
 "select image,thumb from photos where id = ? for update");
stmt.setString(1, id);
rset = (OracleResultSet)stmt.executeQuery();
if (!rset.next())
{
 throw new ServletException("new row not found in table");
}
image = (OrdImage)rset.getORAData(1, OrdImage.getORADataFactory());
thumb = (OrdImage)rset.getORAData(2, OrdImage.getORADataFactory());

rset.close();
stmt.close();
.
.
.
 //
 // Prepare and execute a SQL statement to update the full-size and
 // thumbnail images in the database.
 //
 stmt = (OraclePreparedStatement)conn.prepareStatement(
 "update photos set image = ?, thumb = ? where id = ?");
 stmt.setORAData(1, image);
 stmt.setORAData(2, thumb);
 stmt.setString(3, id);

Oracle Multimedia JSP Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-35

 stmt.execute();
 stmt.close();

 //
 // Commit the changes.
 //
 conn.commit();
}

The fetch() method defined in the PhotoAlbumBean.java file or the
PhotoAlbumBean JavaBean, fetches the next row from the result set using the
ORAData and ORADataFactory interfaces to retrieve the image and the thumbnail
image from an OrdImage Java object, and delivers each to the browser, as shown in the
following example:

public boolean fetch()
 throws SQLException
{
 if (rset.next())
 {
 id = rset.getString(1);
 description = rset.getString(2);
 location = rset.getString(3);
 image = (OrdImage)rset.getORAData(4, OrdImage.getORADataFactory());
 thumb = (OrdImage)rset.getORAData(5, OrdImage.getORADataFactory());
 return true;
 }
 else
 {
 rset.close();
 stmt.close();
 return false;
 }
}

What follows is a more detailed description of each JSP file.

PhotoAlbum.jsp
This JSP file is the entry point to the JSP Photo Album application and does the
following:

■ Uses the PhotoAlbumBean JavaBean to access the contents of the photos table.

■ Uses the OrdHttpJspResponseHandler class to facilitate the retrieval of image
data from the photos table and its delivery to a browser or other HTTP client
from a Java servlet.

■ Displays the title of the page in the HTML header and in the common page header.

■ Displays the thumbnail images in a table using column headers labeled,
Description, Location, and Image.

■ Uses a try/catch block to ensure the JDBC connection is released.

■ Calls the selectTable() method to select all the rows in the photos table.

■ Initializes the row count to zero.

■ Displays an entry in the photo album by calling the getDescription() method, then
the getLocation() method, and then printing the values in the appropriate
columns. If the location information is blank, print a space in the Location
column.

Oracle Multimedia JSP Photo Album Sample Application

3-36 Oracle Multimedia User's Guide

■ Displays the contents of the photo album as thumbnail images using an HTML
anchor tag to call the PhotoAlbumEntryViewer.jsp file to get the ID value by
calling the getID() function.

■ Calls the getThumb() method to get the thumbnail image and calls the
getContentLength() method to determine the image length.

■ Tests to see if the value returned for the image length is greater than 0, and if so
uses an image tag of the form <IMG
SRC="PhotoAlbumMediaViewer.jsp?media=thumb&...> to display the
thumbnail image; otherwise, prints the link view image in the column header
labeled Image, which, when clicked, retrieves the full-size image.

■ Displays a message "The photo album is empty" if the photo album is empty. If the
photo album is not empty, this message is displayed "Select the thumbnail to view
the full-sized image".

■ Ends the try/catch block with a finally clause and releases the JDBC
connection by calling the release() method.

■ Displays a link to the upload form with the text Upload new photo at the bottom
of the page that calls the PhotoAlbumUploadForm.jsp file.

PhotoAlbumEntryViewer.jsp
This JSP file is called by the PhotoAlbum.jsp file that displays one full-size version
of a photograph in the album. This JSP file does the following:

■ Uses the PhotoAlbumBean JavaBean to access the contents of the photos table.

■ Uses the OrdHttpJspResponseHandler class to facilitate the retrieval of image
data from the photos table and its delivery to a browser or other HTTP client
from a Java servlet.

■ Displays the title of the page in the HTML header and in the common page header.

■ Defines a string named id that calls the getParameter() method to get the id
value.

■ Displays a message "Malformed URL, no id parameter" in the event the value of
the id string is null.

■ Uses a try/catch block to ensure the JDBC connection is released.

■ Calls the selectRowById() method with the value of id to select the entry to be
displayed. If the next row to be fetched for that id value is not found, display a
message "Entry not found: <id value>".

■ Displays the entry in the album by calling the getDescription() method and
displaying its value under the header Description, calling the getLocation()
method and displaying its value under the Location header.

■ Displays one full-size version of a photograph in the album using an image tag in
the form
under the Photo header.

■ Displays the full-size images height and width by calling the getHeight() and
getWidth() methods. If the image format is not recognized by Oracle Multimedia,
height and width values are zero and are not be displayed.

■ Displays a link at the bottom of the page Return to photo album that calls the
PhotoAlbum.jsp file.

Oracle Multimedia JSP Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-37

■ Ends the try/catch block, and with a finally clause, releases the JDBC
connection by calling the release() method.

PhotoAlbumMediaViewer.jsp
This JSP file is called by the PhotoAlbum.jsp and PhotoAlbumEntryViewer.jsp
files and retrieves a single thumbnail or full-size image from the photos table using
the PhotoAlbumBean JavaBean and delivers it to the browser using the
OrdHttpResponseHandler class. This JSP file does the following:

■ Uses the PhotoAlbumBean JavaBean to access the contents of the photos table.

■ Uses the OrdHttpJspResponseHandler class to facilitate the retrieval of image
data from the photos table and its delivery to a browser or other HTTP client
from a Java servlet.

■ Defines a string named id that calls the getParameter() method to get the id
value.

■ Defines a string named media that calls the getParameter() method to get the
media value.

■ Sets a condition to proceed as long as the value of the string id and the value of
the string media is not null.

■ Uses a try/catch block to ensure the JDBC connection is released.

■ Calls the selectRowById() method to select a specific row from the photos table
for the value of id.

■ Delivers the full-size or thumbnail image by first calling the setPageContext()
method of the OrdHttpJspResponseHandler class to specify the page context
object; then, calling the getImage() method to return the image to the OrdImage
object; then, calling the sendImage() method of the OrdHttpResponseHandler
class to retrieve the image from the OrdImage object and deliver it to the browser.
If the value of media is image, an image is delivered to the browser; if the value of
media is thumb, a thumbnail image is delivered to the browser. The sendImage()
method supports browser content caching by supporting the If-Modified-Since
and Last-Modified headers.

■ Ends the try/catch block with a finally clause and releases the JDBC
connection by calling the release() method.

■ Displays this message in the event the request is not understood
"PhotoAlbumMediaViewer.jsp - malformed URL".

PhotoAlbumUploadForm.jsp
This JSP file is called by the PhotoAlbum.jsp file that displays an HTML form to
enable users to upload new photographs into the album. This JSP file does the
following:

■ Displays the title of the page in the HTML header and in its common page header.

■ Displays any error message under the header "Error message" from a previous
attempt to upload an image to determine whether the value of a string is not null
after calling the getParameter() method with an argument of error.

■ Displays a header with the text Upload a new photo.

■ Defines the form action specifying the PhotoAlbumInsertPhoto.jsp file to
process the upload request as a multipart/form-data POST request.

Oracle Multimedia JSP Photo Album Sample Application

3-38 Oracle Multimedia User's Guide

■ Displays the upload form with rows labeled Description, Location, and File
name:.

■ Displays the contents of the upload form defined as a table with rows labeled
Description and Location, both with an input type of text and named
description and location respectively, followed by a row labeled File
name: with an input type of file and named photo, and finally followed by a
row with no label and an input type of submit and a value of Upload photo.

■ Displays a link at the bottom of the page Return to photo album that calls the
PhotoAlbum.jsp file.

PhotoAlbumInsertPhoto.jsp
This JSP file is called by the PhotoAlbumUploadForm.jsp file that uses the
OrdHttpUploadFormData class to parse the POST data in a POST request containing
the uploaded photograph. This JSP file does the following:

■ Uses the PhotoAlbumBean JavaBean to access the contents of the photos table.

■ Uses the OrdHttpJspResponseHandler class to facilitate the retrieval of image
data from the photos table and its delivery to a browser or other HTTP client
from a JSP file.

■ Uses the OrdHttpUploadFormData class to facilitate the processing of POST
requests by parsing the POST data containing the multipart/form-data encoding,
and making the contents of regular form fields and uploaded files readily
accessible to a JSP file.

■ Sets the value of the strings description and location to null and the
OrdHttpUploadFile object uploadPhoto to null.

■ Uses a try/catch block to ensure the JDBC connection is released.

■ Passes an OrdHttpUploadFile object to the PhotoAlbumBean class to store the
photograph in the database.

■ Calls the setServletRequest() method of the OrdHttpUploadFormData class to
specify the ServletRequest object for the request.

■ Tests to see if the request is encoded using the multipart/form-data encoding by
calling the isUploadRequest() method of the OrdHttpUploadFormData class.

■ Forwards the request to the PhotoAlbumUploadForm.jsp file if the call to the
isUploadRequest() method returns a Boolean expression of not false.

■ Parses the form data by calling the parseFormData() method of the
OrdHttpUploadFormData class.

■ Gets the form field values for description and location by calling the
getParameter() method of the OrdHttpUploadFormData class, and also gets the
name of the file to be uploaded by calling the getFileParameter() method of the
same class.

■ Tests to make sure the file name is not null from the getFileParameter() method
call of the OrdHttpUploadFormData class, then calls the getOriginalFileName()
method of the OrdHttpUploadFile class to ensure that the original file name as
provided by the browser is not null, or that the content length of the file is empty
by calling the getContentLength() method of the OrdHttpUploadFile class.

■ Forwards the request to the PhotoAlbumUploadForm.jsp file if there is a valid
image file.

Oracle Multimedia JSP Photo Album Sample Application

Oracle Multimedia Photo Album Sample Applications 3-39

■ If the description is null or empty, uses the file name as the description by calling
the getSimpleFileName() method of the OrdHttpUploadFile class.

■ Inserts the new entry into the photos table by calling the setDescription(),
setLocation(), and insertNewPhoto() methods in the PhotoAlbumBean.java
JavaBean.

■ Ends the try/catch block with a finally clause and releases the JDBC
connection by calling the release() method and releases all resources held by the
OrdHttpUploadFormData object by calling its release() method.

■ Displays the updated photo album by displaying the title of the page in the HTML
header and in its common page header, directing the browser to the main page by
calling the PhotoAlbum.jsp file, then displays the header "Photo successfully
uploaded into photo album" and the instruction, "Please click on link below or
wait for the browser to refresh the page".

■ Displays a link at the bottom of the main page Return to photo album that calls
the PhotoAlbum.jsp file.

PhotoAlbumBean.java
This is a JavaBean used by the JSP files to access the database.

The first call to the JavaBean for a request causes it to allocate a JDBC connection from
a connection pool. Subsequent calls by the same request reuse the same connection.
After completing a request, each JSP file is responsible for calling the JavaBean to
release the JDBC connection back to the pool. Each HTTP GET or POST request is
assigned its own JDBC connection from the pool to ensure that multiple requests can
be serviced concurrently.

These methods are defined:

■ The selectTable() method selects all the rows in the photos table, orders them by
location, and returns the results in a result set.

■ The selectRowById() method selects a specific row from the photos table where
the value of id in the where clause is a parameter marker and returns the results
in a result set.

■ The fetch() method fetches the next row from the result set.

■ The insertNewPhoto() method does the following:

– Uses the OrdHttpUploadFile class to upload the new photograph into the
database.

– Disables auto-commit by calling the setAutoCommit() method with an
argument of false.

– Executes a SQL SELECT photos_sequence.nextval statement to get the next
value for the value of the id column for the new row to be inserted into the
photos table.

– Executes a SQL INSERT statement to insert a new row in the photos table.

– Executes a SQL SELECT...FOR UPDATE statement to fetch the initialized
full-size and thumbnail image objects from the photos table.

– Loads the image by calling the loadImage() method in the
OrdHttpUploadFile class to populate an OrdImage object named image
with the full-size image, and sets the properties or attribute values of the
image object based on the image contents.

Oracle Multimedia JSP Photo Album Sample Application

3-40 Oracle Multimedia User's Guide

– Gets the image file format by calling the getContentFormat() method and if it
is not null, and if the MIME type is BMP, then tries to process the image by
calling the process() method and calling the getPreferredFormat() method to
convert it to a MONOCHROME, GIF, or JPEG image format, based on the
number of colors in the image.

– Tries to copy the full-size image and process it to create the thumbnail image
by calling the processCopy() method in the OrdImage class and populate the
OrdImage object named thumb.

– Executes a SQL UPDATE statement to update the full-size and thumbnail
images in the database.

– Commits the changes.

■ A release() method to release the result set and statement objects, and places the
JDBC connection back on the free list or stack.

■ Get methods (getId(), getDescription(), getLocation(), getImage(), and
getThumb()) and the set methods (setId(), setDescription(), and setLocation())
are used to get or set attributes for all attributes or columns.

■ A getConnection() private function implements a simple JDBC connection pool.

■ A freeConnection() private function releases the JDBC connection back to the pool
after completing the request.

■ A getPreferredFormat() private function returns the preferred image file format
based on the number of bits of color in the BMP image; returns a MONOCHROME
image if there are no bits of color, returns JPEG if there are more than 8 bits of
color, or returns GIF if there are between 1 and 8 bits of color.

4

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-1

4 Oracle Multimedia Code Wizard Sample
Application for the PL/SQL Gateway

This chapter describes the Oracle Multimedia Code Wizard sample application. The
Oracle Multimedia Code Wizard sample application for the PL/SQL Gateway is a
media upload and retrieval Web application that uses these Oracle Multimedia image,
audio, video, and heterogeneous media object types.

This chapter assumes the following:

■ You are familiar with developing PL/SQL applications using the PL/SQL
Gateway.

■ You have installed and configured the Oracle Multimedia Code Wizard sample
application.

You can install the Oracle Multimedia Code Wizard sample application from the
Oracle Database Examples media, which is available for download from the Oracle
Technology Network (OTN). After installing the Oracle Database Examples media, the
sample application files and README.txt file are located at:

<ORACLE_HOME>/ord/http/demo/plsgwycw (on Linux and UNIX)

<ORACLE_HOME>\ord\http\demo\plsgwycw (on Windows)

This chapter describes how to run the Code Wizard Photo Album application. See the
README.txt file for additional requirements and instructions on installing and
configuring this sample application.

This chapter includes these sections:

■ Running the Code Wizard Sample Application on page 4-2

■ Description of the Code Wizard Sample Application on page 4-2

■ Sample Session 1: Using Images on page 4-18

■ Sample Session 2: Using Multiple Object Columns on page 4-27

■ Known Restrictions of the Oracle Multimedia Code Wizard on page 4-37

More Sample Applications
See these chapters for more sample applications:

Note: This discussion assumes that the Code Wizard has been
installed in the ORDSYS schema.

Running the Code Wizard Sample Application

4-2 Oracle Multimedia User's Guide

Chapter 3 describes these Photo Album sample Web applications, which use PL/SQL
scripts, Java servlet files, and JSP files to demonstrate various ways to upload and
retrieve media using Oracle Multimedia object types:

■ Oracle Multimedia PL/SQL Web Toolkit Photo Album application (Section 3.1)

■ Oracle Multimedia Java Servlet Photo Album application (Section 3.2)

■ Oracle Multimedia JSP Photo Album application (Section 3.3)

Chapter 5 describes the Oracle Multimedia Java API sample application. This sample
application lets you retrieve, save, play, and delete multimedia data from the Oracle
Database sample schemas using Oracle Multimedia Java classes and Oracle
Multimedia object types.

4.1 Running the Code Wizard Sample Application
To use the Code Wizard sample application to create and test media access procedures,
you must perform these steps:

1. Create a new database access descriptor (DAD) or choose an existing DAD for use
with the Code Wizard.

2. Authorize use of the DAD using the Code Wizard's administration function.

3. Create and test media upload and retrieval procedures.

The following sections describe these steps and other related topics in more detail.

4.2 Description of the Code Wizard Sample Application
The Oracle Multimedia Code Wizard sample application lets you create PL/SQL
stored procedures for the PL/SQL Gateway to upload and retrieve media data
(images, audio, video, and general media) stored in a database using these Oracle
Multimedia object types and their respective methods:

■ ORDImage

■ ORDAudio

■ ORDVideo

■ ORDDoc

The Code Wizard guides you through a series of self-explanatory steps to create either
a media retrieval procedure or a media upload procedure. You can create and compile
standalone media access procedures. Or, you can create the source of media access
procedures for inclusion in a PL/SQL package. Finally, after creating media access
procedures, you can customize them to meet your specific application requirements.

These processes are similar to how the Oracle Multimedia PL/SQL Web Toolkit Photo
Album application uses the insert_new_photo procedure as the image upload
procedure, and the deliver_media procedure as the image retrieval procedure (see
Section 3.1).

The following subsections describe how to use the Code Wizard application:

■ Creating a New DAD or Choosing an Existing DAD

■ Authorizing a DAD

■ Creating and Testing Media Upload and Retrieval Procedures

■ Creating a Media Upload Procedure

Description of the Code Wizard Sample Application

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-3

■ Creating a Media Retrieval Procedure

■ Using the PL/SQL Gateway Document Table

■ How Time Zone Information Is Used to Support Browser Caching

4.2.1 Creating a New DAD or Choosing an Existing DAD
To create media upload or retrieval procedures, you must select one or more DADs for
use with the Code Wizard. To prevent the unauthorized browsing of schema tables
and to prevent the unauthorized creation of media access procedures, you must
authorize each DAD using the Code Wizard administration function. Depending on
your database and application security requirements, you can create and authorize one
or more new DADs specifically for use with the Code Wizard. Or, you can authorize
the use of one or more existing DADs.

Oracle recommends that any DAD authorized for use with the Code Wizard employ
some form of user authentication mechanism. The simplest approach is to create or use
a DAD that uses database authentication. To use this approach, select Basic
Authentication Mode and omit the password in the DAD specification. Alternatively,
you can use a DAD that specifies an existing application-specific authentication
mechanism.

The following example describes how to create a DAD that enables you to create and
test media upload and retrieval procedures in the SCOTT schema.

1. Set your Web browser to the Oracle HTTP Server Home page. Select PL/SQL
Properties in the Administration page to open the mod_plsql Services page.

2. Scroll to the DAD Status section on the mod_plsql Services page. Then, click
Create to open the DAD Type page.

3. Select the DAD type to be General. Then, click Next to open the Database
Connection page.

4. Enter /scottcw in the DAD Name field. Enter SCOTT for the database account,
and leave the password blank. Enter the connection information in the Database
Connectivity Information section. Enter ORDCWPKG.MENU in the Default page
field, and leave the other fields blank. Then, click Next to open the Document,
Alias, and Session page.

See Also:

Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server
in the Oracle Fusion Middleware Online Documentation Library for
more information about configuring DADs

Note: To test media upload procedures, you must specify the
name of a document table in the DAD. When testing an upload
procedure, you can choose either the DAD you used to create the
procedure or the DAD you used to access the application. You can
choose a document table name when you create a DAD, edit a DAD
to specify the document table name at a later time, or use an
existing DAD that specifies a document table name. This example
shows how to specify the document table name when you create
the DAD.

Description of the Code Wizard Sample Application

4-4 Oracle Multimedia User's Guide

5. Enter MEDIA_UPLOAD_TABLE for the Document Table on the Document, Alias,
and Session page. Then, click Apply.

6. Restart Oracle HTTP Server for the changes to take effect.

4.2.2 Authorizing a DAD
To authorize a DAD for use with the Code Wizard, perform these steps:

1. Enter the Code Wizard's administration URL into the location bar for your
browser. For example:

http://<host-name>:<port-number>/ordcwadmin

2. Enter the user name and password when prompted by the browser.

3. Select DAD authorization from the Main menu, as shown in Figure 4–1. Then,
click Next.

Figure 4–1 Main Menu for the Code Wizard

4. Enter the name of the DAD you want to authorize along with the user name, as
shown in Figure 4–2. Then, click Apply.

Description of the Code Wizard Sample Application

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-5

Figure 4–2 Authorize the SCOTTCW DAD

5. Review the updated list of DADs that are authorized to use the Oracle Multimedia
Code Wizard, as shown in Figure 4–3. Then, click Done.

Note: Duplicate DADs are not permitted, and each authorized
DAD must indicate which database schema the user is authorized
to access with the Code Wizard, using the DAD. Use this same page
to delete the authorization for any existing DADs that no longer
require the Code Wizard.

Description of the Code Wizard Sample Application

4-6 Oracle Multimedia User's Guide

Figure 4–3 List of Authorized DADs

6. Select Logout from the Main menu to log out (clear HTTP authentication
information), then click Next. The log out operation redirects the request to the
PL/SQL Gateway built-in logmeoff function.

4.2.3 Creating and Testing Media Upload and Retrieval Procedures
After you have completed the setup tasks (as described in Section 4.2.1, Section 4.2.2,
and the README.txt file), you are ready to run this application.

To start the Code Wizard, follow these steps:

1. Enter the appropriate URL into the address field of your Web browser.

For example:

http://<hostname>:<port-number>/scottcw

or

http://<hostname>:<port-number>/mediadad/ordcwpkg.menu

2. Enter the user name and password when prompted by the browser. The Main
menu page of the Oracle Multimedia Code Wizard for the PL/SQL Gateway is
displayed, as shown in Figure 4–4.

See Also:

 Oracle Fusion Middleware User’s Guide for mod_plsql in the Oracle
Fusion Middleware Online Documentation Library

Description of the Code Wizard Sample Application

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-7

Figure 4–4 Use the SCOTTCW DAD

3. If the DAD is configured specifically for use with the Code Wizard, enter the DAD
name. To use another DAD, enter the DAD name along with the Code Wizard
package name and Main menu procedure name (ORDCWPKG.MENU) after the DAD
name.

4. After logging in, you can log out (clear HTTP authentication information) at any
time by selecting Logout from the Main menu, then clicking Next. The logout
operation redirects the request to the PL/SQL Gateway's built-in logmeoff
function.

To create a media upload procedure (see Section 4.2.4) or a media retrieval procedure
(see Section 4.2.5), select the appropriate option from the Main menu page, then click
Next. The Code Wizard then guides you through a series of self-explanatory steps to
create the procedure.

If you create a standalone media upload or retrieval procedure, you will have the
opportunity to view the contents of the procedure and test it. Section 4.3 and
Section 4.4, respectively, include sample sessions that demonstrate how to create and
test a media upload procedure and a media retrieval procedure.

4.2.4 Creating a Media Upload Procedure
To create a media upload procedure using the Oracle Multimedia Code Wizard for the
PL/SQL Gateway, perform these steps:

See Also:

Oracle Fusion Middleware User’s Guide for mod_plsql in the Oracle Fusion
Middleware Online Documentation Library

Description of the Code Wizard Sample Application

4-8 Oracle Multimedia User's Guide

1. Select Create media upload procedure from the Main menu page, as shown in
Figure 4–5. Then, click Next.

Figure 4–5 Create a Media Upload Procedure

2. Select PHOTOS and Standalone procedure from Step 1: Select database table
and procedure type, as shown in Figure 4–6. Then, click Next.

Figure 4–6 Media Upload Step 1: Select Database Table and Procedure Type

3. Select Use existing document table from Step 2: Select PL/SQL Gateway
document upload table, as shown in Figure 4–7, because the SCOTTCW DAD is
configured to use this document table. Then, click Next.

Description of the Code Wizard Sample Application

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-9

Figure 4–7 Media Upload Step 2: Select PL/SQL Gateway Document Upload Table

4. Check PHOTO (ORDIMAGE), select ID (Primary key), and select Conditional
insert or update from Step 3: Select data access and media column(s), as shown
in Figure 4–8. Then, click Next.

Description of the Code Wizard Sample Application

4-10 Oracle Multimedia User's Guide

Figure 4–8 Media Upload Step 3: Select Data Access and Media Column(s)

5. Check DESCRIPTION, accept the default procedure name, UPLOAD_PHOTOS_
PHOTO, and select Create procedure in the database from Step 4: Select
additional columns and procedure name, as shown in Figure 4–9. Then, click
Next.

Description of the Code Wizard Sample Application

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-11

Figure 4–9 Media Upload Step 4: Select Additional Columns and Procedure Name

6. Review the options you selected from Step 5: Review selected options, as shown
in Figure 4–10. If the options selected are correct, click Finish.

Description of the Code Wizard Sample Application

4-12 Oracle Multimedia User's Guide

Figure 4–10 Media Upload Step 5: Review Selected Options

7. The message Procedure created successfully: UPLOAD_PHOTOS_PHOTO
is displayed on the Compile procedure and review generated source page, as
shown in Figure 4–11.

Figure 4–11 Compiled Upload Procedure with Success Message

To review the compiled PL/SQL source code in another window, click View (see
Example 4–1 for a copy of the generated upload procedure). Assuming you have

Description of the Code Wizard Sample Application

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-13

configured the SCOTTCW DAD and specified MEDIA_UPLOAD_TABLE as the
document table, in the DAD: field, the DAD name scottcw is displayed by
default.

To test the PL/SQL procedure created, click Test.

The Oracle Multimedia Code Wizard: Template Upload Form is displayed in
another window.

8. Enter the value 1 in the ID field on the Oracle Multimedia Code Wizard:
Template Upload Form window. Click Browse... to find and select the image you
want to upload in the PHOTO field, and enter a brief description of the image to
be uploaded in the DESCRIPTION field, as shown in Figure 4–12. Then, click
Upload media.

Figure 4–12 Template Upload Form for the Code Wizard

The image is uploaded into the table row, and this message is displayed:

Media uploaded successfully.

9. Return to the Compile procedure and review generated source page. If you are
finished testing, click Done to return to the Main menu page.

4.2.5 Creating a Media Retrieval Procedure
To create a media retrieval procedure using the Oracle Multimedia Code Wizard for
the PL/SQL Gateway, perform these steps:

1. Select Create media retrieval procedure from the Main menu page, as shown in
Figure 4–13. Then, click Next.

Figure 4–13 Create a Media Retrieval Procedure

2. Select PHOTOS and Standalone procedure from Step 1: Select database table
and procedure type, as shown in Figure 4–14. Then, click Next.

Description of the Code Wizard Sample Application

4-14 Oracle Multimedia User's Guide

Figure 4–14 Media Retrieval Step 1: Select Database Table and Procedure Type

3. Select PHOTO (ORDIMAGE) and ID (Primary key) from Step 2: Select media
column and key column, as shown in Figure 4–15. Then, click Next.

Figure 4–15 Media Retrieval Step 2: Select Media Column and Key Column

4. Accept the default procedure name, GET_PHOTOS_PHOTO, the default parameter
name, MEDIA_ID, and Create procedure in the database from Step 3: Select
procedure name and parameter name, as shown in Figure 4–16. Then, click Next.

Description of the Code Wizard Sample Application

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-15

Figure 4–16 Media Retrieval Step 3: Select Procedure Name and Parameter Name

5. Review the options you selected from Step 4: Review Selected Options, as shown
in Figure 4–17. If the options selected are correct, click Finish.

Figure 4–17 Media Retrieval Step 4: Review Selected Options

Description of the Code Wizard Sample Application

4-16 Oracle Multimedia User's Guide

6. The message Procedure created successfully: GET_PHOTOS_PHOTO is
displayed in the Compile procedure and review generated source page, as shown
in Figure 4–18.

Figure 4–18 Compiled Retrieval Procedure with Success Message

To review the compiled PL/SQL source code in another window, click View (see
Example 4–2 for a copy of the generated retrieval procedure).

To test the PL/SQL procedure created, assuming you have an image loaded in the
database with an ID value of 1, enter the value 1 for the Key parameter (MEDIA_
ID), then click Test.

The image is retrieved from the table row and displayed in another window.

7. Click Done to return to the Main menu page.

4.2.6 Using the PL/SQL Gateway Document Table
All files uploaded using the PL/SQL Gateway are stored in a document table. Media
upload procedures created by the Code Wizard automatically move uploaded media
from the specified document table to the application's table. To avoid transient files
from appearing temporarily in a document table used by another application
component, use a document table that is not being used to store documents
permanently.

Specify the selected document table in the application's database access descriptor
(DAD). If the DAD specifies a different document table, create a new DAD for media
upload procedures. If you choose to create a new document table, the Code Wizard
creates a table with the following format:

Description of the Code Wizard Sample Application

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-17

CREATE TABLE document-table-name
 (name VARCHAR2(256) UNIQUE NOT NULL,
 mime_type VARCHAR2(128),
 doc_size NUMBER,
 dad_charset VARCHAR2(128),
 last_updated DATE,
 content_type VARCHAR2(128),
 blob_content BLOB)
--
-- store BLOBs as SecureFile LOBs
--
LOB(blob_content) STORE AS SECUREFILE;

4.2.7 How Time Zone Information Is Used to Support Browser Caching
User response times are improved and network traffic is reduced if a browser can
cache resources received from a Web server and subsequently use those cached
resources to satisfy future requests. This section describes at a very high level, how the
browser caching mechanism works and how the Code Wizard utility package is used
to support that mechanism. When reading this discussion, keep in mind that all HTTP
date and time stamps are expressed in Coordinated Universal Time (UTC).

All HTTP responses include a Date header, which indicates the date and time when
the response was generated. When a Web server sends a resource in response to a
request from a browser, it can also include the Last-Modified HTTP response header,
which indicates the date and time when the requested resource was last modified. The
Last-Modified header must not be later than the Date header.

After receiving and caching a resource, if a browser must retrieve the same resource
again, it sends a request to the Web server with the If-Modified-Since request header
specified as the value of the Last-Modified date, which was returned by the
application server when the resource was previously retrieved and cached. When the
Web server receives the request, it compares the date in the If-Modified-Since request
header with the last update time of the resource. Assuming the resource still exists, if
the resource has not changed since it was cached by the browser, the Web server
responds with an HTTP 304 Not Modified status with no response body, which
indicates that the browser can use the resource currently stored in its cache. Assuming
again that the resource still exists, if the request does not include an If-Modified-Since
header or if the resource has been updated since it was cached by the browser, the Web
server responds with an HTTP 200 OK status and sends the resource to the browser.

The ORDImage, ORDAudio, ORDVideo, and ORDDoc objects all possess an
updateTime attribute stored as a DATE in the embedded ORDSource object. Although
the DATE data type has no support for time zones or daylight savings time, the
Oracle9i and later database versions do support time zones and also provide functions
for converting a DATE value stored in a database to UTC.

When a response is first returned to a browser, a media retrieval procedure sets the
Last-Modified HTTP response header based on the updateTime attribute. If a request
for media data includes an If-Modified-Since header, the media retrieval procedure
compares the value with the updateTime attribute and returns an appropriate
response. If the resource in the browser's cache is still valid, an HTTP 304 Not
Modified status is returned with no response body. If the resource has been updated

See Also:

Oracle Fusion Middleware User’s Guide for mod_plsql in the Oracle Fusion
Middleware Online Documentation Library for more information
about file upload and document tables

Sample Session 1: Using Images

4-18 Oracle Multimedia User's Guide

since it was cached by the browser, then an HTTP 200 OK status is returned with the
media resource as the response body.

Media retrieval procedures created by the Code Wizard call the utility package to
convert a DATE value stored in the database to UTC. The utility package uses the time
zone information stored with an Oracle9i or later database and the date and time
functions to convert database date and time stamps to UTC. To ensure the resulting
date conforms to the rule for the Last-Modified date described previously, the time
zone information must be specified correctly.

4.3 Sample Session 1: Using Images
The following sample session uses the SCOTT schema to demonstrate the creation of
image media upload and retrieval procedures. To use a different schema, substitute a
different schema name and password. Or, if you have changed the password for the
SCOTT schema, use your new password.

This sample session assumes the Oracle Multimedia Code Wizard has been installed in
the ORDSYS schema.

Perform these steps:

Step 1 Create a table to store images for the application by starting SQL*Plus
and connecting to the SCOTT (or other) schema in the database.
For example:

sqlplus SCOTT [@<connect_identifer>]

Enter password: password

SQL> CREATE TABLE cw_images_table(id NUMBER PRIMARY KEY,
 description VARCHAR2(30) NOT NULL,
 location VARCHAR2(30),
 image ORDSYS.ORDIMAGE)
--
-- store media as SecureFile LOBs
--
LOB(image.source.localdata) STORE AS SECUREFILE;

Step 2 Create the SCOTTCW DAD to be used to create the procedures.
1. Set your Web browser to the Oracle HTTP Server Home page. Select PL/SQL

Properties in the Administration page to open the mod_plsql Services page.

See Also:

■ http://www.w3.org/Protocols/ for more information about
the HTTP specification

■ Oracle Automatic Storage Management Administrator's Guide for
more information about how to set a time zone for a database

■ Oracle Database SQL Language Reference for more information about
date and time functions

See Also:

Oracle Database Security Guide for more information about creating
secure passwords

Sample Session 1: Using Images

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-19

2. On the mod_plsql Services page, scroll to the DAD Status section. Then, click
Create to open the DAD Type page.

3. Select the DAD type to be General. Then, click Next to open the Database
Connection page.

4. Enter /scottcw in the DAD Name field. Enter SCOTT for the database account,
and leave the password blank. Enter the connection information in the Database
Connectivity Information section. Enter ORDCWPKG.MENU in the Default page
field, and leave the other fields blank. Then, click Next to open the Document,
Alias, and Session page.

5. On the Document, Alias, and Session page, enter MEDIA_UPLOAD_TABLE for the
Document Table. Then, click Apply.

6. Restart Oracle HTTP Server for the changes to take effect.

Step 3 Authorize the use of the SCOTTCW DAD and SCOTT schema with the Code
Wizard.
1. Enter the Code Wizard's administration URL into your browser's location bar, then

enter the ORDSYS user name and password when prompted by the browser, for
example:

http://<hostname>:<port-number>/ordcwadmin

2. Select the DAD authorization function from the Code Wizard's Main menu and
click Next. Enter the name of the demonstration DAD, SCOTTCW, and the user
name SCOTT, then click Apply. Click Done when the confirmation window is
displayed.

Step 4 Change DADs to the SCOTTCW DAD.
1. Click Change DAD from the Code Wizard's Main menu.

2. Click Change to SCOTTCW, if it is not already selected, then click Next.

3. Enter the user name SCOTT and the password for the user SCOTT when prompted
for the user name and password, then click OK.

The Main menu now displays the current DAD as SCOTTCW and the current
schema as SCOTT.

Step 5 Create and test the media upload procedure.
Click Create media upload procedure from the Main menu, then click Next.

1. Select the database table and procedure type.

a. Click the CW_IMAGES_TABLE database table.

b. Click Standalone procedure.

c. Click Next.

2. Select the PL/SQL document upload table.

If there are no document tables in the SCOTT schema, the Code Wizard displays a
message indicating this situation. In this case, accept the default table name
provided, CW_SAMPLE_UPLOAD_TABLE, then click Next.

If there are existing document tables, but the CW_SAMPLE_UPLOAD_TABLE is not
among them, click Create new document table, accept the default table name
provided, CW_SAMPLE_UPLOAD_TABLE, then click Next.

Sample Session 1: Using Images

4-20 Oracle Multimedia User's Guide

If the CW_SAMPLE_UPLOAD_TABLE document table already exists, ensure that the
Use existing document table and the CW_SAMPLE_UPLOAD_TABLE options
are selected. Click Next.

3. Select the data access and media columns.

a. Click IMAGE (ORDIMAGE).

b. Click ID (Primary key).

c. Click Conditional insert or update.

d. Click Next.

4. Select additional columns and procedure names.

a. Ensure that DESCRIPTION checkmarked because this column has a NOT
NULL constraint. (The LOCATION column is not checkmarked by default as
there are no constraints on this column.)

b. Accept the procedure name provided, UPLOAD_CW_IMAGES_TABLE_IMAGE.

c. Click Create procedure in the database.

d. Click Next.

5. Review the following selected procedure creation options that are displayed:

Procedure type: Standalone
Table name: CW_IMAGES_TABLE
Media column(s): IMAGE (ORDIMAGE)
Key column: ID
Additional column(s): DESCRIPTION
Table access mode: Conditional update or insert
Procedure name: UPLOAD_CW_IMAGES_TABLE_IMAGE
Function: Create procedure in the database

Click Finish.

6. Compile the procedure and review the generated source information.

The Code Wizard displays this message:

Procedure created successfully: UPLOAD_CW_IMAGES_TABLE_IMAGE

a. At the option Click to display generated source:, click View to view the
generated source in another window. A copy of the generated source is shown
at the end of Step 5, substep 6g.

b. Close the window after looking at the generated source.

c. Accept the DAD: name provided, SCOTTCW, then click Test to produce
another window that displays a template file upload form that you can use to
test the generated procedure.

d. To customize the template file upload form, select Save As... from your
browser's File menu to save the HTML source for editing.

e. To test the template upload form, enter this information:

– For the ID: column, enter the number 1 as the row's primary key.

– For the IMAGE column, click Browse... and choose an image file to
upload to the database.

– For the DESCRIPTION column, enter a brief description of the image.

– Click Upload media.

Sample Session 1: Using Images

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-21

The Code Wizard displays a template completion window with the heading
Oracle Multimedia Code Wizard: Template Upload Procedure, and, if the
procedure is successful, the message: Media uploaded successfully.

f. Close the window.

g. Click Done on the Compile procedure and review generated source window
to return to the Main menu of the Code Wizard.

Example 4–1 shows a copy of the generated image upload procedure:

Example 4–1 Image Upload Procedure Generated in Sample Session 1

CREATE OR REPLACE PROCEDURE UPLOAD_CW_IMAGES_TABLE_IMAGE
 (in_ID IN VARCHAR2,
 in_IMAGE IN VARCHAR2 DEFAULT NULL,
 in_DESCRIPTION IN VARCHAR2 DEFAULT NULL)
AS
 local_IMAGE ORDSYS.ORDIMAGE := ORDSYS.ORDIMAGE.init();
 local_ID CW_IMAGES_TABLE.ID%TYPE := NULL;
 upload_size INTEGER;
 upload_mimetype VARCHAR2(128);
 upload_blob BLOB;
BEGIN
 --
 -- Update the existing row.
 --
 UPDATE CW_IMAGES_TABLE mtbl
 SET mtbl.IMAGE = local_IMAGE,
 mtbl.DESCRIPTION = in_DESCRIPTION
 WHERE mtbl.ID = in_ID
 RETURN mtbl.ID INTO local_ID;
 --
 -- Conditionally insert a new row if no existing row is updated.
 --
 IF local_ID IS NULL
 THEN
 --
 -- Insert the new row into the table.
 --
 INSERT INTO CW_IMAGES_TABLE (ID, IMAGE, DESCRIPTION)
 VALUES (in_ID, local_IMAGE, in_DESCRIPTION);
 END IF;
 --
 -- Select Oracle Multimedia object(s) for update.
 --
 SELECT mtbl.IMAGE INTO local_IMAGE
 FROM CW_IMAGES_TABLE mtbl WHERE mtbl.ID = in_ID FOR UPDATE;
 --
 -- Store media data for the column in_IMAGE.
 --
 IF in_IMAGE IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM CW_IMAGE_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_IMAGE.source.localData,
 upload_blob,
 upload_size);

Sample Session 1: Using Images

4-22 Oracle Multimedia User's Guide

 local_IMAGE.setLocal();
 BEGIN
 local_IMAGE.setProperties();
 EXCEPTION
 WHEN OTHERS THEN
 local_IMAGE.contentLength := upload_size;
 local_IMAGE.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM CW_IMAGE_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
 END IF;
 --
 -- Update Oracle Multimedia objects in the table.
 --
 UPDATE CW_IMAGES_TABLE mtbl
 SET mtbl.IMAGE = local_IMAGE
 WHERE mtbl.ID = in_ID;
 --
 -- Display the template completion message.
 --
 htp.print('<html>');
 htp.print('<title>Oracle Multimedia Code Wizard: Template Upload
Procedure</title>');
 htp.print('<body>');
 htp.print('<h2> Oracle Multimedia Code Wizard:
Template Upload Procedure</h2>');
 htp.print('Media uploaded successfully.');
 htp.print('</body>');
 htp.print('</html>');
END UPLOAD_CW_IMAGES_TABLE_IMAGE;

The image upload procedure shown in Example 4–1 declares these input
parameters and variables:

1. In the declaration section, the procedure declares three input parameters: in_
ID, in_IMAGE, and in_DESCRIPTION, then initializes the latter two to NULL.

2. In the subprogram section, the following variables are declared:

– The variable local_IMAGE is assigned the data type
ORDSYS.ORDIMAGE and initialized with an empty BLOB using the
ORDIMAGE.init() method.

– The variable local_ID takes the same data type as the ID column in the
table CW_IMAGES_TABLE and is initialized to NULL.

– Three additional variables are declared upload_size, upload_
mimetype, and upload_blob, which are later given values from
comparable column names doc_size, mime_type, and blob_content
from the document table CW_IMAGE_UPLOAD_TABLE, using a SELECT
statement in preparation for copying the content of the image BLOB data
to the ORDSYS.ORDIMAGE.source.localData attribute.

Within the outer BEGIN...END executable statement section, the following
operations are executed:

1. Update the existing row in the table CW_IMAGES_TABLE for the IMAGE and
DESCRIPTION columns and return the value of local_ID where the value of
the ID column is the value of the in_ID input parameter.

Sample Session 1: Using Images

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-23

2. If the value returned of local_ID is NULL, conditionally insert a new row
into the table CW_IMAGES_TABLE and initialize the instance of the ORDImage
object type in the image column with an empty BLOB.

3. Select the ORDImage object column IMAGE in the table CW_IMAGES_TABLE
for update where the value of the ID column is the value of the in_ID input
parameter.

4. Select a row for the doc_size, mime_type, and blob_content columns
from the document table and pass the values to the upload_size, upload_
mimetype, and upload_blob variables where the value of the document
table Name column is the value of the in_IMAGE input parameter.

5. Perform a DBMS_LOB copy of the BLOB data from the table CW_IMAGE_
UPLOAD_TABLE into the ORDSYS.ORDIMAGE.source.localData attribute,
then call the setLocal() method to indicate that the image data is stored locally
in the BLOB, and ORDImage methods are to look for corresponding data in
the source.localData attribute.

6. In the inner executable block, call the ORDImage setProperties() method to
read the image data to get the values of the object attributes and store them in
the image object attributes for the ORDImage object.

7. If the setProperties() call fails, catch the exception and call the contentLength(
) method to get the size of the image and call the mimeType() method to get
the MIME type of the image.

8. Delete the row of data from the document table CW_IMAGE_UPLOAD_TABLE
that was copied to the row in the table CW_IMAGES_TABLE where the value of
the Name column is the value of the in_IMAGE input parameter.

9. Update the ORDImage object IMAGE column in the table CW_IMAGES_TABLE
with the content of the variable local_IMAGE where the value of the ID
column is the value of the in_ID input parameter.

10. Display a completion message on the HTML page to indicate that the media
uploaded successfully using the htp.print function from the PL/SQL Web
Toolkit.

Step 6 Create and test a media retrieval.
Select Create media retrieval procedure from the Main menu, then click Next.

1. Select the database table and procedure type.

a. Click CW_IMAGES_TABLE.

b. Click Standalone procedure.

c. Click Next.

2. Select the media column and key column.

a. Click IMAGE (ORDIMAGE).

b. Click ID (Primary key).

c. Click Next.

3. Select the procedure name and parameter name.

a. Accept the procedure name provided, GET_CW_IMAGES_TABLE_IMAGE.

b. Accept the parameter name provided, MEDIA_ID.

c. Click Create procedure in the database.

Sample Session 1: Using Images

4-24 Oracle Multimedia User's Guide

d. Click Next.

4. Review the following selected procedure creation options:

Procedure type: Standalone
Table name: CW_IMAGES_TABLE
Media column(s): IMAGE (ORDIMAGE)
Key column: ID
Procedure name: GET_CW_IMAGES_TABLE_IMAGE
Parameter Name: MEDIA_ID
Function: Create procedure in the database

Click Next.

5. Compile the procedure and review the generated source.

The Code Wizard displays this message:

Procedure created successfully: GET_CW_IMAGES_TABLE_IMAGE

a. Click View to view the generated source in another window. Close the
window after looking at the generated source. A copy of the generated source
is shown at the end of Step 6, substep 5e.

b. Review the URL format used to retrieve images using the GET_CW_IMAGES_
TABLE_IMAGE procedure.

c. Enter the number 1 as the Key parameter, then click Test to test the procedure
by retrieving the image uploaded previously.

The retrieved image is displayed in another window.

d. Close the window.

e. Click Done to return to the Main menu.

Example 4–2 shows a copy of the generated image retrieval procedure:

Example 4–2 Image Retrieval Procedure Generated in Sample Session 1

CREATE OR REPLACE PROCEDURE GET_CW_IMAGES_TABLE_IMAGE (
 MEDIA_ID IN VARCHAR2)
AS
 localObject ORDSYS.ORDIMAGE;
 localBlob BLOB;
 localBfile BFILE;
 httpStatus NUMBER;
 lastModDate VARCHAR2(256);
BEGIN
 --
 -- Retrieve the object from the database into a local object.
 --
 BEGIN
 SELECT mtbl.IMAGE INTO localObject FROM CW_IMAGES_TABLE mtbl
 WHERE mtbl.ID = MEDIA_ID;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 ordplsgwyutil.resource_not_found('MEDIA_ID', MEDIA_ID);
 RETURN;
 END;

 --
 -- Check the update time if the browser sent an If-Modified-Since header.
 --

Sample Session 1: Using Images

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-25

 IF ordplsgwyutil.cache_is_valid(localObject.getUpdateTime())
 THEN
 owa_util.status_line(ordplsgwyutil.http_status_not_modified);
 RETURN;
 END IF;

 --
 -- Figure out where the image is.
 --
 IF localObject.isLocal() THEN
 --
 -- Data is stored locally in the localData BLOB attribute.
 --
 localBlob := localObject.getContent();
 owa_util.mime_header(localObject.getMimeType(), FALSE);
 ordplsgwyutil.set_last_modified(localObject.getUpdateTime());
 owa_util.http_header_close();
 IF owa_util.get_cgi_env('REQUEST_METHOD') <> 'HEAD' THEN
 wpg_docload.download_file(localBlob);
 END IF;
 ELSIF UPPER(localObject.getSourceType()) = 'FILE' THEN

 --
 -- Data is stored as a file from which ORDSource creates
 -- a BFILE.
 --
 localBfile := localObject.getBFILE();
 owa_util.mime_header(localObject.getMimeType(), FALSE);
 ordplsgwyutil.set_last_modified(localObject.getUpdateTime());
 owa_util.http_header_close();
 IF owa_util.get_cgi_env('REQUEST_METHOD') <> 'HEAD' THEN
 wpg_docload.download_file(localBfile);
 END IF;

 ELSIF UPPER(localObject.getSourceType()) = 'HTTP' THEN
 --
 -- The image is referenced as an HTTP entity, so we have to
 -- redirect the client to the URL that ORDSource provides.
 --
 owa_util.redirect_url(localObject.getSource());
 ELSE
 --
 -- The image is stored in an application-specific data
 -- source type for which no default action is available.
 --
 NULL;
 END IF;
END GET_CW_IMAGES_TABLE_IMAGE;

The image retrieval procedure shown in Example 4–2 declares these input
parameters and variables:

1. In the declaration section, the procedure declares one input parameter:
MEDIA_ID.

2. In the subprogram section, the following variables are declared:

– The variable localObject is assigned the data type
ORDSYS.ORDIMAGE.

Sample Session 1: Using Images

4-26 Oracle Multimedia User's Guide

– The variable localBlob is a BLOB data type, the variable localBfile
is a BFILE data type, httpStatus is a NUMBER, and lastModDate is a
VARCHAR2 with a maximum size of 256 characters.

Within the outer BEGIN...END executable statement section, the following
operations are executed:

1. Select the ORDImage object column IMAGE in the table CW_IMAGES_TABLE
where the value of the ID column is the value of the MEDIA_ID input
parameter.

2. In the inner executable block, when no data is found, raise an exception and
call the resource_not_found function of the PL/SQL Gateway and get the
value of the MEDIA_ID input parameter.

3. Check the update time if the browser sent an If-Modified-Since header by
calling the getUpdateTime() method passed into the cache_is_valid
function of the PL/SQL Gateway.

4. If the cache is valid, send an HTTP status code to the client using the PL/SQL
Web Toolkit owa_util package status_line procedure passing in the call
to the http_status_not_modified function.

5. Determine where the image data is stored; call the ORDImage isLocal()
method, which returns a Boolean expression of true if the image data is stored
locally in the BLOB, then get the handle to the local BLOB.

– If the value is true, assign the variable localBlob the ORDImage
getContent() method to get the handle of the local BLOB containing the
image data.

– Call the ORDImage getMimeType() method to determine the image's
MIME type and pass this to the owa_util.mime_header procedure and
keep the HTTP header open.

– Call the ORDImage getUpdateTime() method to get the time the image
was last modified and pass this to the ordplsgwyutil.set_last_
modified procedure.

– Close the HTTP header by calling the owa_util.http_header_close(
) procedure.

– Call the owa_util.get_cgi_env procedure and if the value of the
request method is not HEAD, then use the wpg_docload.download_
file procedure to pass in the value of localBlob that contains the LOB
locator of the BLOB containing the image data to download the image
from the database.

6. If the ORDImage isLocal() method returns false, call the ORDImage
getSourceType() method to determine if the value is FILE; if so, then the
image data is stored as an external file on the local file system. Then, get the
LOB locator of the BFILE containing the image data.

– Assign the variable localBfile the ORDImage getBfile() method to get
the LOB locator of the BFILE containing the image data.

– Call the ORDImage getMimeType() method to determine the image's
MIME type and pass this to the owa_util.mime_header procedure and
keep the HTTP header open.

– Call the ORDImage getUpdateTime() method to get the time the image
was last modified and pass this to the ordplsgwyutil.set_last_
modified procedure.

Sample Session 2: Using Multiple Object Columns

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-27

– Close the HTTP header by calling the owa_util.http_header_
close() procedure.

– Call the owa_util.get_cgi_env procedure and if the value of the
request method is not HEAD, then use the wpg_docload.download_
file procedure to pass in the value of localBfile that contains the
LOB locator of the BFILE containing the image data to download the
image from the file.

7. If the ORDImage isLocal() method returns false, call the ORDImage
getSourceType() method to determine if the value is HTTP; if so, then the
image data is stored at an HTTP URL location, which then redirects the client
to the URL that ORDSource provides using the owa_util.redirect_url
procedure.

8. If the ORDImage isLocal() method returns false, call the ORDImage
getSourceType() method to determine if the value is FILE or HTTP; if it is
neither, then the image is stored in an application-specific data source type
that is not recognized or supported by Oracle Multimedia.

4.4 Sample Session 2: Using Multiple Object Columns
The following sample session uses the SCOTT schema to demonstrate the creation of a
multiple media (multiple Oracle Multimedia object columns) upload procedure and a
single media retrieval procedure. To use a different schema, substitute a different
schema name and password. Or, if you have changed the password for the SCOTT
schema, use your new password.

This sample session assumes the Oracle Multimedia Code Wizard has been installed.

Perform these steps:

Step 1 Create a table to store audio for the application by starting SQL*Plus and
connecting to the SCOTT (or other) schema in the database.
For example:

sqlplus SCOTT [@<connect_identifer>]

Enter password: password

SQL> CREATE TABLE cw_media_table(id NUMBER PRIMARY KEY,
 description VARCHAR2(30) NOT NULL,
 location VARCHAR2(30),
 image ORDSYS.ORDIMAGE,
 thumb ORDSYS.ORDIMAGE,
 audio ORDSYS.ORDAUDIO,
 video ORDSYS.ORDVIDEO,
 media ORDSYS.ORDDOC)
--
-- store media as SecureFile LOBs
--
LOB(image.source.localdata) STORE AS SECUREFILE
LOB(thumb.source.localdata) STORE AS SECUREFILE
LOB(audio.source.localdata) STORE AS SECUREFILE

See Also:

Oracle Database Security Guide for more information about creating
secure passwords

Sample Session 2: Using Multiple Object Columns

4-28 Oracle Multimedia User's Guide

LOB(video.source.localdata) STORE AS SECUREFILE
LOB(media.source.localdata) STORE AS SECUREFILE;

Step 2 Use the SCOTTCW DAD you created in Step 2. Then, authorize the use of it
in Step 3.
If you have not created the SCOTTCW DAD and authorized the use of this DAD,
perform Steps 2 and 3 in this section, then continue to next step that follows in this
section.

Step 3 Change DADs to the SCOTTCW DAD.
1. Enter the Code Wizard's administration URL into your browser's location bar, then

enter the ORDSYS user name and password when prompted by the browser, for
example:

http://<hostname>:<port-number>/ordcwadmin

2. Click Change DAD from the Code Wizard's Main menu.

3. Click Change to SCOTTCW, if it is not already selected, then click Next.

4. Enter the user name SCOTT and the password for the user SCOTT when prompted
for the user name and password, then press OK.

The Main menu now displays the current DAD as SCOTTCW and the current
schema as SCOTT.

Step 4 Create and test the media upload procedure.
Click Create media upload procedure from the Main menu, then click Next.

1. Select the database table and procedure Type.

a. Click CW_MEDIA_TABLE.

b. Click Standalone procedure.

c. Click Next.

2. Select the PL/SQL document upload table.

If there are no document tables in the SCOTT schema, the Code Wizard displays a
message indicating this situation. In this case, accept the default table name
provided, CW_MEDIA_UPLOAD_TABLE, then click Next.

If there are existing document tables, but the table CW_MEDIA_UPLOAD_TABLE is
not among them, click Create new document table, accept the default table name
provided, CW_MEDIA_UPLOAD_TABLE, then click Next.

If the CW_MEDIA_UPLOAD_TABLE document table already exists, select Use
existing document table and CW_MEDIA_UPLOAD_TABLE, then click Next.

3. Select the data access and media columns.

a. Ensure that IMAGE (ORDIMAGE), THUMB (ORDIMAGE), AUDIO
(ORDAUDIO), VIDEO (ORDVIDEO), and MEDIA (ORDDOC) are all
checkmarked.

b. Click ID (Primary key).

c. Click Conditional insert or update.

d. Click Next.

4. Select additional columns and procedure names.

Sample Session 2: Using Multiple Object Columns

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-29

a. Ensure that DESCRIPTION is checkmarked because this column has a NOT
NULL constraint. (The LOCATION column is not checkmarked by default as
there are no constraints on this column.)

b. Accept the procedure name provided, UPLOAD_CW_MEDIA_TABLE_IMAGE.

c. Click Create procedure in the database.

d. Click Next.

5. Review the following selected procedure creation options that are displayed:

Procedure type: Standalone
Table name: CW_MEDIA_TABLE
Media column(s): IMAGE (ORDIMAGE)
 THUMB (ORDIMAGE)
 AUDIO (ORDAUDIO)
 VIDEO (ORDVIDEO)
 MEDIA (ORDDOC)
Key column: ID
Additional column(s): DESCRIPTION
Table access mode: Conditional update or insert
Procedure name: UPLOAD_CW_MEDIA_TABLE_IMAGE
Function: Create procedure in the database

Click Finish.

6. Compile the procedure and review the generated source information.

The Code Wizard displays this message:

Procedure created successfully: UPLOAD_CW_MEDIA_TABLE_IMAGE

a. At the option Click to display generated source:, click View to view the
generated source in another window. A copy of the generated source is shown
at the end of Step 4, substep 6g.

b. Close the window after looking at the generated source.

c. Accept the DAD: name provided, SCOTTCW, then click Test to display in
another window a template file upload form that you can use to test the
generated procedure.

d. To customize the template file upload form, select Save As... from your
browser's File menu to save the HTML source for editing.

e. To test the template upload form, enter the following information:

– For the ID: column, enter the number 1 as the row's primary key.

– For each Oracle Multimedia object column, click Browse... and choose the
appropriate media to upload to each column of the table. You can choose
one or more or all columns to test.

– For the DESCRIPTION column, enter a brief description of the media.

– Click Upload media.

The Code Wizard displays a template completion window with the heading
Oracle Multimedia Code Wizard: Template Upload Procedure, and, if the
procedure is successful, the message: Media uploaded successfully.

f. Close the window.

g. Click Done on the Compile procedure and review generated source window
to return to the Main menu of the Code Wizard.

Sample Session 2: Using Multiple Object Columns

4-30 Oracle Multimedia User's Guide

Example 4–3 shows a copy of the generated multiple media upload procedure:

Example 4–3 Multiple Media Upload Procedure Generated in Sample Session 2

CREATE OR REPLACE PROCEDURE UPLOAD_CW_MEDIA_TABLE_IMAGE
 (in_ID IN VARCHAR2,
 in_IMAGE IN VARCHAR2 DEFAULT NULL,
 in_THUMB IN VARCHAR2 DEFAULT NULL,
 in_AUDIO IN VARCHAR2 DEFAULT NULL,
 in_VIDEO IN VARCHAR2 DEFAULT NULL,
 in_MEDIA IN VARCHAR2 DEFAULT NULL,
 in_DESCRIPTION IN VARCHAR2 DEFAULT NULL)
AS
 local_IMAGE ORDSYS.ORDIMAGE := ORDSYS.ORDIMAGE.init();
 local_THUMB ORDSYS.ORDIMAGE := ORDSYS.ORDIMAGE.init();
 local_AUDIO ORDSYS.ORDAUDIO := ORDSYS.ORDAUDIO.init();
 local_AUDIO_ctx RAW(64);
 local_VIDEO ORDSYS.ORDVIDEO := ORDSYS.ORDVIDEO.init();
 local_VIDEO_ctx RAW(64);
 local_MEDIA ORDSYS.ORDDOC := ORDSYS.ORDDOC.init();
 local_MEDIA_ctx RAW(64);
 local_ID CW_MEDIA_TABLE.ID%TYPE := NULL;
 upload_size INTEGER;
 upload_mimetype VARCHAR2(128);
 upload_blob BLOB;
BEGIN
 --
 -- Update the existing row.
 --
 UPDATE CW_MEDIA_TABLE mtbl
 SET mtbl.IMAGE = local_IMAGE,
 mtbl.THUMB = local_THUMB,
 mtbl.AUDIO = local_AUDIO,
 mtbl.VIDEO = local_VIDEO,
 mtbl.MEDIA = local_MEDIA,
 mtbl.DESCRIPTION = in_DESCRIPTION
 WHERE mtbl.ID = in_ID
 RETURN mtbl.ID INTO local_ID;
 --
 -- Conditionally insert a new row if no existing row is updated.
 --
 IF local_ID IS NULL
 THEN
 --
 -- Insert a new row into the table.
 --
 INSERT INTO CW_MEDIA_TABLE (ID, IMAGE, THUMB, AUDIO, VIDEO, MEDIA,
 DESCRIPTION)
 VALUES (in_ID, local_IMAGE, local_THUMB, local_AUDIO,
 local_VIDEO, local_MEDIA, in_DESCRIPTION);
 END IF;
 --
 -- Select Oracle Multimedia object(s) for update.
 --
 SELECT mtbl.IMAGE, mtbl.THUMB, mtbl.AUDIO, mtbl.VIDEO, mtbl.MEDIA INTO
 local_IMAGE, local_THUMB, local_AUDIO, local_VIDEO, local_MEDIA
 FROM CW_MEDIA_TABLE mtbl WHERE mtbl.ID = in_ID FOR UPDATE;
 --
 -- Store media data for the column in_IMAGE.
 --

Sample Session 2: Using Multiple Object Columns

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-31

 IF in_IMAGE IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_IMAGE.source.localData,
 upload_blob,
 upload_size);
 local_IMAGE.setLocal();
 BEGIN
 local_IMAGE.setProperties();
 EXCEPTION
 WHEN OTHERS THEN
 local_IMAGE.contentLength := upload_size;
 local_IMAGE.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_IMAGE;
 END IF;
 --
 -- Store media data for the column in_THUMB.
 --
 IF in_THUMB IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_THUMB;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_THUMB.source.localData,
 upload_blob,
 upload_size);
 local_THUMB.setLocal();
 BEGIN
 local_THUMB.setProperties();
 EXCEPTION
 WHEN OTHERS THEN
 local_THUMB.contentLength := upload_size;
 local_THUMB.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_THUMB;
 END IF;
 --
 -- Store media data for the column in_AUDIO.
 --
 IF in_AUDIO IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_AUDIO;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_AUDIO.source.localData,
 upload_blob,
 upload_size);
 local_AUDIO.setLocal();
 BEGIN

Sample Session 2: Using Multiple Object Columns

4-32 Oracle Multimedia User's Guide

 local_AUDIO.setProperties(local_AUDIO_ctx);
 EXCEPTION
 WHEN OTHERS THEN
 local_AUDIO.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_AUDIO;
 END IF;
 --
 -- Store media data for the column in_VIDEO.
 --
 IF in_VIDEO IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_VIDEO;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_VIDEO.source.localData,
 upload_blob,
 upload_size);
 local_VIDEO.setLocal();
 BEGIN
 local_VIDEO.setProperties(local_VIDEO_ctx);
 EXCEPTION
 WHEN OTHERS THEN
 local_VIDEO.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_VIDEO;
 END IF;
 --
 -- Store media data for the column in_MEDIA.
 --
 IF in_MEDIA IS NOT NULL
 THEN
 SELECT dtbl.doc_size, dtbl.mime_type, dtbl.blob_content INTO
 upload_size, upload_mimetype, upload_blob
 FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_MEDIA;
 IF upload_size > 0
 THEN
 dbms_lob.copy(local_MEDIA.source.localData,
 upload_blob,
 upload_size);
 local_MEDIA.setLocal();
 BEGIN
 local_MEDIA.setProperties(local_MEDIA_ctx, FALSE);
 EXCEPTION
 WHEN OTHERS THEN
 local_MEDIA.contentLength := upload_size;
 local_MEDIA.mimeType := upload_mimetype;
 END;
 END IF;
 DELETE FROM MEDIA_UPLOAD_TABLE dtbl WHERE dtbl.name = in_MEDIA;
 END IF;
 --
 -- Update Oracle Multimedia objects in the table.
 --
 UPDATE CW_MEDIA_TABLE mtbl
 SET mtbl.IMAGE = local_IMAGE,

Sample Session 2: Using Multiple Object Columns

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-33

 mtbl.THUMB = local_THUMB,
 mtbl.AUDIO = local_AUDIO,
 mtbl.VIDEO = local_VIDEO,
 mtbl.MEDIA = local_MEDIA
 WHERE mtbl.ID = in_ID;
 --
 -- Display the template completion message.
 --
 htp.print('<html>');
 htp.print('<title>Oracle Multimedia Code Wizard: Template Upload
 Procedure</title>');
 htp.print('<body>');
 htp.print('<h2> Oracle Multimedia Code Wizard:
 Template Upload Procedure</h2>');
 htp.print('Media uploaded successfully.');
 htp.print('</body>');
 htp.print('</html>');

END UPLOAD_CW_MEDIA_TABLE_IMAGE;

The multiple media upload procedure shown in Example 4–3 declares these input
parameters and variables:

1. In the declaration section, the procedure declares seven input parameters: in_
ID, in_IMAGE, in_THUMB, in_AUDIO, in_VIDEO, in_MEDIA, and in_
DESCRIPTION, then initializes the last six to NULL.

2. In the subprogram section, the following variables are declared:

– The variables local_IMAGE and local_THUMB are assigned the data
type ORDSYS.ORDIMAGE and initialized with an empty BLOB using the
ORDIMAGE.init() method.

– The variable local_AUDIO is assigned the data type
ORDSYS.ORDAUDIO and initialized with an empty BLOB using the
ORDAUDIO.init() method. Also a context variable local_AUDIO_ctx is
assigned the data type RAW(64).

– The variable local_VIDEO is assigned the data type
ORDSYS.ORDVIDEO and initialized with an empty BLOB using the
ORDVIDEO.init() method. Also, a context variable local_VIDEO_ctx is
assigned the data type RAW(64).

– The variable local_MEDIA is assigned the data type ORDSYS.ORDDOC
and initialized with an empty BLOB using the ORDDOC.init() method.
Also, a context variable local_MEDIA_ctx is assigned the data type
RAW(64).

– The variable local_ID takes the same data type as the ID column in the
table CW_MEDIA_TABLE and is initialized to NULL.

– Three additional variables are declared upload_size, upload_
mimetype, and upload_blob, which are later given values from
comparable column names doc_size, mime_type, and blob_content
from the document table MEDIA_UPLOAD_TABLE using a SELECT
statement. This is all in preparation for copying the content of the image,
thumb, audio, video, and media BLOB data to the respective
ORDSYS.ORDIMAGE.source.localData,
ORDSYS.ORDIMAGE.source.localData,
ORDSYS.ORDAUDIO.source.localData,

Sample Session 2: Using Multiple Object Columns

4-34 Oracle Multimedia User's Guide

ORDSYS.ORDVIDEO.source.localData, and
ORDSYS.ORDDOC.source.localData attributes.

Within the outer BEGIN...END executable statement section, the following
operations are executed:

1. Update the existing row in the table CW_MEDIA_TABLE for the IMAGE, THUMB,
AUDIO, VIDEO, MEDIA, and DESCRIPTION columns and return the value of
local_ID where the value of the ID column is the value of the in_ID input
parameter.

2. If the value returned of local_ID is NULL, conditionally insert a new row
into the table CW_MEDIA_TABLE and initialize the instance of the ORDImage
object type in the IMAGE column with an empty BLOB, the instance of the
ORDImage object type in the THUMB column with an empty BLOB, the
instance of the ORDAudio object type in the AUDIO column with an empty
BLOB, the instance of the ORDVideo object type in the VIDEO column with an
empty BLOB, and the instance of the ORDDoc object type in the MEDIA
column with an empty BLOB.

3. Select the ORDImage object column IMAGE, ORDImage object column THUMB,
ORDAudio object column AUDIO, ORDVideo object column VIDEO, and
ORDDoc object column MEDIA in the table CW_MEDIA_TABLE for update
where the value of the ID column is the value of the in_ID input parameter.

4. Select a row for the doc_size, mime_type, and blob_content columns
from the document table and pass the values to the upload_size, upload_
mimetype, and upload_blob variables where the value of the Name column
is the value of one of these input parameters: in_IMAGE; in_THUMB;
in_AUDIO; in_VIDEO; or in_MEDIA.

5. Perform a DBMS LOB copy of the BLOB data from the table MEDIA_UPLOAD_
TABLE into the ORDSYS.ORDIMAGE.source.localData,
ORDSYS.ORDIMAGE.source.localData,
ORDSYS.ORDAUDIO.source.localData,
ORDSYS.ORDVIDEO.source.localData, and
ORDSYS.ORDDoc.source.localData attribute, then call the setLocal() method
to indicate that the image, audio, and video data are stored locally in the
BLOB, and ORDImage, ORDAudio, ORDVideo, and ORDDoc methods are to
look for corresponding data in the source.localData attribute.

6. In the inner executable block, call the respective ORDImage, ORDAudio,
ORDVideo, and ORDDoc setProperties() method to read the image, audio,
and video data to get the values of the object attributes and store them in the
image, audio, video, and media object attributes for the ORDImage,
ORDAudio, ORDVideo, and ORDDoc objects.

7. If the setProperties() call fails, catch the exception and call the contentLength(
) method to get the size of the media data and call the mimeType() method to
get the MIME type of the media data.

8. Delete the row of data from the document table MEDIA_UPLOAD_TABLE hat
was copied to the row in the table CW_MEDIA_TABLE where the value of the
Name column is the value of the respective in_IMAGE, in_THUMB, in_AUDIO,
in_VIDEO, and in_MEDIA input parameter.

9. Update the ORDImage object IMAGE column, the ORDImage object THUMB
column, the ORDAudio object AUDIO column, the ORDVideo object VIDEO
column, and the ORDDoc object MEDIA column in the table CW_MEDIA_
TABLE with the content of the variables local_IMAGE, local_THUMB,

Sample Session 2: Using Multiple Object Columns

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-35

local_AUDIO, local_VIDEO, and local_MEDIA respectively, where the
value of the ID column is the value of the in_ID input parameter.

10. Display a completion message on the HTML page to indicate that the media
uploaded successfully using the htp.print function from the PL/SQL Web
Toolkit.

Step 5 Create and test a media retrieval.
Select Create media retrieval procedure from the Main menu, then click Next.

1. Select the database table and procedure type.

a. Click CW_MEDIA_TABLE.

b. Click Standalone procedure.

c. Click Next.

2. Select the media column and key column.

a. Ensure that one the following object columns is checkmarked. For example, if
you loaded media data into the media column in Step 4, substep 6e, then select
the MEDIA (ORDDOC) column.

b. Click ID (Primary key).

c. Click Next.

3. Select the procedure name and parameter name.

a. Accept the procedure name provided, GET_CW_MEDIA_TABLE_IMAGE.

b. Accept the parameter name provided, MEDIA_ID.

c. Click Create procedure in the database.

d. Click Next.

4. Review the following selected procedure creation options:

Procedure type: Standalone
Table name: CW_MEDIA_TABLE
Key column: ID
Media column: IMAGE (ORDDOC)
Procedure name: GET_CW_MEDIA_TABLE_IMAGE
Parameter name: MEDIA_ID
Function: Create procedure in the database

Click Finish.

5. Compile the procedure and review the generated source.

The Code Wizard displays this message:

Procedure created successfully: GET_CW_MEDIA_TABLE_IMAGE

a. Click View to view the generated source in another window. Close the
window after looking at the generated source. A copy of the generated source
is shown at the end of this step.

b. Review the URL format used to retrieve images using the GET_CW_MEDIA_
TABLE_IMAGE procedure.

c. Enter the number 1 as the Key parameter, then click Test to test the procedure
by retrieving the image uploaded previously.

d. The retrieved image is displayed in another window.

Sample Session 2: Using Multiple Object Columns

4-36 Oracle Multimedia User's Guide

e. Close the window.

f. Click Done to return to the Main menu.

Example 4–4 shows a copy of the generated media retrieval procedure:

Example 4–4 Media Retrieval Procedure Generated in Sample Session 2

CREATE OR REPLACE PROCEDURE GET_CW_MEDIA_TABLE_MEDIA (MEDIA_ID
 IN VARCHAR2)
AS
 localObject ORDSYS.ORDDOC;
 localBlob BLOB;
 localBfile BFILE;
 httpStatus NUMBER;
 lastModDate VARCHAR2(256);

BEGIN
 --
 -- Retrieve the object from the database into a local object.
 --
 BEGIN
 SELECT mtbl.MEDIA INTO localObject FROM CW_MEDIA_TABLE mtbl
 WHERE mtbl.ID = MEDIA_ID;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 ordplsgwyutil.resource_not_found('MEDIA_ID', MEDIA_ID);
 RETURN;
 END;
 --
 -- Check the update time if the browser sent an If-Modified-Since header.
 --
 IF ordplsgwyutil.cache_is_valid(localObject.getUpdateTime())
 THEN
 owa_util.status_line(ordplsgwyutil.http_status_not_modified);
 RETURN;
 END IF;
 --
 -- Figure out where the image is.
 --
 IF localObject.isLocal() THEN
 --
 -- Data is stored locally in the localData BLOB attribute.
 --
 localBlob := localObject.getContent();
 owa_util.mime_header(localObject.getMimeType(), FALSE);
 ordplsgwyutil.set_last_modified(localObject.getUpdateTime());
 owa_util.http_header_close();
 IF owa_util.get_cgi_env('REQUEST_METHOD') <> 'HEAD' THEN
 wpg_docload.download_file(localBlob);
 END IF;

Note: A generated media retrieval script, unlike the multiple
media upload script shown at the end of Step 4, handles only the
type of media data designed for that Oracle Multimedia object type.
To retrieve media data stored in other Oracle Multimedia object
types, generate a retrieval script for each desired media data type
and add it to your PL/SQL package.

Known Restrictions of the Oracle Multimedia Code Wizard

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway 4-37

 ELSIF UPPER(localObject.getSourceType()) = 'FILE' THEN
 --
 -- Data is stored as a file from which ORDSource creates
 -- a BFILE.
 --
 localBfile := localObject.getBFILE();
 owa_util.mime_header(localObject.getMimeType(), FALSE);
 ordplsgwyutil.set_last_modified(localObject.getUpdateTime());
 owa_util.http_header_close();
 IF owa_util.get_cgi_env('REQUEST_METHOD') <> 'HEAD' THEN
 wpg_docload.download_file(localBfile);
 END IF;

 ELSIF UPPER(localObject.getSourceType()) = 'HTTP' THEN
 --
 -- The image is referenced as an HTTP entity, so we have to
 -- redirect the client to the URL that ORDSource provides.
 --
 owa_util.redirect_url(localObject.getSource());
 ELSE
 --
 -- The image is stored in an application-specific data
 -- source type for which no default action is available.
 --
 NULL;
 END IF;
END GET_CW_MEDIA_TABLE_MEDIA;

For a description of the media retrieval procedure shown in Example 4–4, see the
description that follows Example 4–2 (in Section 4.3). The only difference between
these two retrieval procedures is the type of object that is retrieved. Example 4–2
uses an ORDImage object type; Example 4–4 uses an ORDDoc object type.

4.5 Known Restrictions of the Oracle Multimedia Code Wizard
The following restrictions are known for the Oracle Multimedia Code Wizard:

■ Tables with composite primary keys are not supported.

To use a table with a composite primary key, create an upload or download
procedure, then edit the generated source to support all the primary key columns.
For example, for a media retrieval procedure, this might involve adding an
additional parameter, then specifying that parameter in the where clause of the
SELECT statement.

■ User object types containing embedded Oracle Multimedia object types are not
recognized by the Oracle Multimedia Code Wizard.

Known Restrictions of the Oracle Multimedia Code Wizard

4-38 Oracle Multimedia User's Guide

5

Oracle Multimedia Java API Sample Application 5-1

5 Oracle Multimedia Java API Sample
Application

This chapter describes the Oracle Multimedia Java API sample application. The Oracle
Multimedia Java API sample application is a Java application that uses Oracle
Multimedia Java classes to demonstrate how to upload, download, update, and delete
Oracle Multimedia objects, including image, audio, and video. It also demonstrates
how to extract attributes from media content, generate thumbnail images, and display
media.

This chapter assumes the following:

■ You are familiar with developing Java applications using Oracle Multimedia Java
classes.

■ You have installed and configured the Oracle Multimedia Java API sample
application.

After installing the Oracle Database Examples media, the sample application files and
README.txt file are located at:

<ORACLE_HOME>/ord/im/demo/java (on Linux and UNIX)

<ORACLE_HOME>\ord\im\demo\java (on Windows)

This chapter describes how to run the Oracle Multimedia Java API sample application.
See Section 2.4.1 and the README.txt file for additional requirements and
instructions on installing, configuring, compiling, and running this sample
application.

This chapter includes these sections:

■ Running the Oracle Multimedia Java API Sample Application on page 5-2

■ Description of the Oracle Multimedia Java API Sample Application on page 5-2

More Sample Applications
See these chapters for more sample applications:

 Chapter 3 describes these Photo Album sample Web applications:

■ Oracle Multimedia PL/SQL Web Toolkit Photo Album application (Section 3.1)

■ Oracle Multimedia Java Servlet Photo Album application (Section 3.2)

■ Oracle Multimedia JSP Photo Album application (Section 3.3)

These Web applications use PL/SQL scripts, Java servlet files, and JSP files to
demonstrate various ways to upload and retrieve media using Oracle Multimedia
object types.

Running the Oracle Multimedia Java API Sample Application

5-2 Oracle Multimedia User's Guide

Chapter 4 describes the Oracle Multimedia Code Wizard sample application, a media
upload and retrieval Web application for the PL/SQL Gateway.

5.1 Running the Oracle Multimedia Java API Sample Application
To use the Oracle Multimedia Java API sample application to retrieve, save, play, and
delete multimedia data from the Oracle Database sample schemas, you must perform
these steps:

1. Install Oracle Database with Oracle Multimedia.

2. Grant the appropriate permissions to the user who is connecting to the database.

3. Compile and start the sample application.

4. Log in and run the sample application.

The following section describes the Java class files, and shows code examples that
demonstrate how to use Oracle Multimedia object types and methods and other
Oracle objects in a Java application.

5.2 Description of the Oracle Multimedia Java API Sample Application
The Oracle Multimedia Java API sample application lets you retrieve multimedia data
from the Oracle Database sample schemas, save to a file, play, and delete from the
sample schema image, audio, video, and testimonial data using these Oracle
Multimedia object types:

■ OrdImage

■ OrdAudio

■ OrdVideo

■ OrdDoc

This sample application uses the PRODUCT_INFORMATION table in the Order Entry
(OE) sample schema, and the ONLINE_MEDIA table in the Product Media (PM)
sample schema.

The Oracle Multimedia Java API sample application, when compiled, creates the class
files shown in Table 5–1:

Note: After installing Oracle Multimedia, if the OE and PM sample
schemas do not exist, you must install them manually before
compiling and running the sample application.

See Also:

Oracle Database Sample Schemas for more information about the OE and
PM schemas

Table 5–1 Java Class Files in the Compiled Sample Application

Name Description

IMExample Creates the sample application frame and maintains the only
connection to the database. This class is the entry point of this
sample application.

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-3

The major flow among these class files is: IMExample to IMExampleFrame to
IMLoginDialog (login) to IMExampleFrame.showDefaultTable() to
IMExampleQuery to IMProductDialog to one group of classes (IMImagePanel,
IMAudioPanel, IMVideoPanel, IMDocPanel), and finally to the last group of
classes (IMLoadFile, IMSaveFile, IMMediaPanel).

Table 5–2 lists and describes the remaining Java class files in this sample application:

IMExampleFrame Extends the JFrame class and displays the main frame.

IMLoginDialog Extends the JDialog class, displays the login dialog box, and
creates the connection to the database.

IMExampleQuery Performs the SQL SELECT statement to retrieve rows of the
OE.PRODUCT_INFORMATION table and displays the content of
the table by product ID.

IMProductDialog Extends the JDialog class, shows a dialog box to display
detailed information for a particular product, including the
product ID, product name, and product description. The
IMProductDialog class also retrieves and displays the product
photo, audio, video, and testimonial data within the appropriate
panel. It supports retrieving, saving, deleting, and playing the
media data. And, it allows for applying changes or rolling back
changes to the media objects.

IMImagePanel Extends the IMMediaPanel class, displays the product photo
and its attributes: MIME type, image height, image width, and
content length, and if it applies, generates and displays the
thumbnail image and displays lists for reading and writing
metadata.

IMAudioPanel Extends the IMMediaPanel class and displays the product
audio and its attributes: MIME type, duration of the audio, and
content length.

IMVideoPanel Extends the IMMediaPanel class and displays the product
video and its attributes: MIME type, frame height, frame width,
duration of the video, and content length.

IMDocPanel Extends the IMMediaPanel class and displays the product
testimonials and its attributes: MIME type and content length.

IMLoadFile Loads a media stream (photo, video, audio, and testimonials),
from a file to the PM.ONLINE_MEDIA table in the database, and
if necessary, inserts a row and initializes the media objects, then
updates the media data, sets the media attributes, and generates
and updates the thumbnail image if loading a photo.

IMSaveFile Saves a media stream from the database to a target file.

IMMediaPanel Extends the JPanel class, lays out the common components for
the photo, audio, video, and doc panel with load, save, delete,
and play check boxes, initializes the MIME configuration file for
each operating system that lists plug-in players and media and
their associated MIME types, plays the data stream associated
with the MIME type of the media, and enables users to specify
their own player to play the media data stream.

Table 5–1 (Cont.) Java Class Files in the Compiled Sample Application

Name Description

Description of the Oracle Multimedia Java API Sample Application

5-4 Oracle Multimedia User's Guide

Table 5–2 Additional Java Class Files in the Sample Application

Name Description

IMUtil Includes common utilities such as a method to generate and
update thumbnail images, wrapper methods for each
setProperties() method of each media object type to separate the
exceptions caused by unrecognizable formats, and cleanup
methods to close the following: resultSet, Statement, input
stream and its reader, and output stream and its writer.

IMMIME Loads and stores the mapping between plug-in players and the
MIME type.

IMResultSetTableModel Extends the AbstractTableModel class and controls the
display of the OE.PRODUCT_INFORMATION table.

IMMessage Displays various messages for the sample application and
classifies the message level as error, warning, or suggestion.

IMMessageResource Extends the java.util.ListResourceBundle class and
contains the actual message text for all messages.

IMJOptionPane Extends and puts into subclasses the JOptionPane class to add
an accessible description message to the displayed dialog box.

IMGetMetadataDialog Extends the JDialog class, and retrieves the metadata from an
image into an XML document and then displays the XML
document in a JTree form.

IMPutMetadataDialog Extends the JDialog class, and constructs an XMP packet to
write into an image from user inputs.

XMLTreeNode Extends the DefaultMutableTreeNode class, and creates a
tree representation of an XML node.

XMLTreeView Extends the JPanel class, and displays an XML document as a
tree.

IMFileChooser Extends the JFileChooser class, and inherits from the
JFileChooser class to add the button mnemonic and
accessible description.

IMConstants Describes the IMConstants interface, which contains all the
constants for column names, media types, message types, and
message dialog titles.

IMAttrTableModel Extends and puts into subclasses the DefaultTableModel
class to provide the table model for displaying media attributes,
and overwrites the isCellEditable() method to make the cells
uneditable.

FocusedJTextField Extends and puts into subclasses the JTextField class and
overwrites the isFocusTraversable() method to enable it to gain
focus when it is set to uneditable.

FocusedJTextArea Extends and puts into subclasses the JTextArea class and
overwrites the isFocusTraversable() method to enable it to gain
focus when it is set to uneditable; also overrides the
isManagingFocus() method to force the JTextArea class not to
handle a TAB key operation.

FocusedJPanel Extends and puts into subclasses the JPanel class and
overwrites the isFocusTraversable() method to enable it to gain
focus.

FocusedJLabel Extends and puts into subclasses the JLabel class, overwrites
the isFocusTraversable() method, and adds a focus listener to
enable it to gain focus.

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-5

The following subsections describe the main operations that are performed within
specific classes in the Oracle Multimedia Java API sample application:

■ Operations in the IMProductDialog Class

■ Operations in the IMImagePanel Class

■ Operations in the IMGetMetadataDialog Class

■ Operations in the IMPutMetadataDialog Class

■ Operations in the IMVideoPanel Class

■ Operations in the IMAudioPanel Class

■ Operations in the IMDocPanel Class

■ Operations in the IMLoadFile Class

■ Operations in the IMUtil Class

5.2.1 Operations in the IMProductDialog Class
This class defines the following methods followed by a description of what each
method does:

■ The loadMedia() method to retrieve the media objects from the database. This
method performs a SQL SELECT...FOR UPDATE statement on the PM.ONLINE_
MEDIA table where the PRODUCT_ID column is a parameter marker; then this class
uses the getORAData and getORADataFactory interfaces to get the media data
objects from the result set.

■ The displayMedia() method to display the media data, which in turn calls the
corresponding media display methods displayImage(), displayAudio(),
displayVideo(), and displayDoc ().

■ The displayImage() method calls the IMImagePanel.display() method to display
the image data attributes, display the thumbnail image, and display the full sized
image using a media player that supports this MIME type.

BooleanRenderer Extends the JCheckBox class and renders Boolean objects as
JCheckBox (a check box) in a JTable (two-dimensional table
format). This class also sets the AccessibleName and
AccessibleDescription properties by setting the tooltip to
support accessibility.

IMStreamAbsorber Extends the Thread class and runs as a separate thread to
consume an input stream. This is useful when a plug-in
application is loaded and it writes something out to, for
example, a standard error, without consuming the application's
output, the application may be unable to continue.

IMTable Extends and puts into subclasses the JTable class and
overwrites the isManagingFocus() method to avoid letting the
table handle a TAB key operation.

IMTableRenderer Extends the DefaultTableCellRenderer class and renders
the PRODUCT_ID, PRODUCT_NAME, and PRODUCT_
DESCRIPTION columns to add accessibility information, and
sets the customized display.

IMUIUtil Includes common GUI utilities.

Table 5–2 (Cont.) Additional Java Class Files in the Sample Application

Name Description

Description of the Oracle Multimedia Java API Sample Application

5-6 Oracle Multimedia User's Guide

■ The displayAudio() method calls the IMAudioPanel.display() method to display
the audio data attributes and play the audio stream using a media player that
supports this MIME type.

■ The displayVideo() method calls the IMVideoPanel.display() method to display
the video data attributes and play the video stream using a media player that
supports this MIME type.

■ The displayDoc() method calls the IMDocPanel.display() method to display the
testimonial data attributes and play the testimonial data using a media player that
supports this MIME type.

The following code example shows the loadMedia(), displayMedia(), displayImage(),
displayAudio(), displayVideo(), and displayDoc() methods, and highlights in bold
the SQL query statements and areas in the code where Oracle Multimedia and other
Oracle object types and methods are used.

 private void loadMedia() throws SQLException, IOException
 {
 String sQuery =
 "select product_photo, product_thumbnail, product_audio, product_video, " +
 "product_testimonials from pm.online_media where product_id = ? for update";

 OracleConnection conn = null;
 OracleResultSet rs = null;
 OraclePreparedStatement pstmt = null;
 boolean isInsertNeeded = false;
 byte[] ctx[] = new byte[1][64];

 try
 {
 conn = IMExample.getDBConnection();

 pstmt = (OraclePreparedStatement)conn.prepareStatement(sQuery);
 pstmt.setInt(1, m_iProdId);
 rs = (OracleResultSet)pstmt.executeQuery();
 if (rs.next() == true)
 {
 m_img = (OrdImage)rs.getORAData(1, OrdImage.getORADataFactory());
 m_imgThumb = (OrdImage)rs.getORAData(2, OrdImage.getORADataFactory());
 m_aud = (OrdAudio)rs.getORAData(3, OrdAudio.getORADataFactory());
 m_vid = (OrdVideo)rs.getORAData(4, OrdVideo.getORADataFactory());
 m_doc = (OrdDoc)rs.getORAData(5, OrdDoc.getORADataFactory());
 }

 displayMedia();

 rs.close();
 pstmt.close();
 }
 finally
 {
 IMUtil.cleanup(rs, pstmt);
 }
 }

 private void displayMedia() throws SQLException, IOException
 {
 displayImage();
 displayAudio();

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-7

 displayVideo();
 displayDoc();
 }

 /**
 * Add the product photo panel.
 */
 private void displayImage() throws SQLException, IOException
 {
 m_jImgPanel = new IMImagePanel(this,
 m_img, m_imgThumb, m_iProdId, m_colorFieldBg);
 m_jImgPanel.display();
 m_jImgPanel.getAccessibleContext().setAccessibleName
 ("Product photo panel");
 m_jImgPanel.getAccessibleContext().setAccessibleDescription
 ("Product photo panel with an image icon on the left, " +
 "image attribute panel in the middle and image control" +
 "panel on the right.");

 m_jMediaPanel.add(m_jImgPanel);

 Component jImgFocus = m_jImgPanel.getFirstFocusComponent();
 }

 /**
 * Add the product audio panel.
 */
 private void displayAudio() throws SQLException, IOException
 {
 m_jAudPanel = new IMAudioPanel(this, m_aud, m_iProdId, m_colorFieldBg);
 m_jAudPanel.display();
 m_jAudPanel.getAccessibleContext().setAccessibleName
 ("Product audio panel");
 m_jAudPanel.getAccessibleContext().setAccessibleDescription(
 "Product audio panel with an audio icon at the left, " +
 "audio attribute panel in the middle and audio control" +
 "panel at the right.");
 m_jMediaPanel.add(m_jAudPanel);
 }

 /**
 * Add the product video panel.
 */
 private void displayVideo() throws SQLException, IOException
 {
 m_jVidPanel = new IMVideoPanel(this, m_vid, m_iProdId, m_colorFieldBg);
 m_jVidPanel.display();
 m_jVidPanel.getAccessibleContext().setAccessibleName
 ("Product audio panel");
 m_jVidPanel.getAccessibleContext().setAccessibleDescription(
 "Product audio panel with an video icon at the left, " +
 "video attribute panel in the middle and video control" +
 "panel at the right.");
 m_jMediaPanel.add(m_jVidPanel);
 }

 /**
 * Add the product testimonials panel.
 */
 private void displayDoc() throws SQLException, IOException

Description of the Oracle Multimedia Java API Sample Application

5-8 Oracle Multimedia User's Guide

 {
 m_jDocPanel = new IMDocPanel(this, m _doc, m_iProdId, m_colorFieldBg);
 m_jDocPanel.display();
 m_jDocPanel.getAccessibleContext().setAccessibleName
 ("Product testimonials panel");
 m_jDocPanel.getAccessibleContext().setAccessibleDescription(
 "Product testimonials panel with an document icon at the left, " +
 "testimonials attribute panel in the middle and testimonials control" +
 "panel at the right.");
 m_jMediaPanel.add(m_jDocPanel);
 }

See Operations in the IMImagePanel Class, Operations in the IMAudioPanel Class,
Operations in the IMVideoPanel Class, and Operations in the IMDocPanel Class for
code examples of the corresponding m_jXxxPanel.display() methods, where Xxx
represents the particular media data type, Img, Aud, Vid, or Doc.

5.2.2 Operations in the IMImagePanel Class
This class displays the image panel, the product photo and its attributes, and the
thumbnail image, and lists for reading and writing metadata. What follows is a more
detailed description of each of the methods that are defined and what each method
does:

■ The display() method, which first calls the insertProperty() method, which calls
the Oracle Multimedia image object type methods getMimeType(), getHeight(),
getWidth(), and getContentlength() to get the attributes of the image to display in
a table, and lays out the user interface components for reading and writing image
metadata.

■ For supported formats, the class displays the product photo thumbnail image,
which is generated by calling the IMUtil.generateThumbnail()method to create
the thumbnail image from the product photo.

■ The addThumbnail() method to show the new thumbnail image.

■ The changeThumbnail() method to change the thumbnail image.

■ The saveToFile() method to save the photo to a file.

■ The deleteMedia() method to delete the product photo image and its thumbnail
image from the database by setting the image object type columns to empty using
the OrdImage.init() method.

■ The play() media method to show the image using a media player.

■ The setMedia() method to set the photo and thumbnail object.

■ The notExist() method checks whether the image data exists and returns true if
the BLOB is empty or is not associated with an existing BFILE; otherwise, it
returns false.

■ The getDataInByteArray() method retrieves image data into a byte array by
calling the Oracle Multimedia importData() method first for the BFILE and
returns the results of calling the Oracle Multimedia getDataInByteArray()
method.

■ The refreshPanel() method refreshes the display when updating the photo image,
attributes, and thumbnail image.

■ The getFirstFocusComponent() method enforces the correct focus order.

■ The emptyPanel() method clears the icon and attribute panel.

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-9

■ The showMetadata() method to pop up a window for displaying metadata for the
selected type.

■ The writeMetadata() method to display the write metadata dialog.

The following code example includes the display(), insertProperty(), notExist(),
getDataInByteArray(), and refreshPanel() methods, and highlights in bold any SQL
query statements and areas in the code where Oracle Multimedia and other Oracle
object types and methods are used:

 void display() throws IOException, SQLException
 {
 addControlPane();

 if (notExist(m_img))
 {
 // The image does not exist.
 m_hasMedia = false;
 layoutEmpty(s_sNotExist);
 }
 else
 {
 m_hasMedia = true;
 // If image exists, try to show the attributes.
 if (insertProperty())
 {
 // Show the thumbnail image.
 // If the thumbnail image does not exist, generate it first.
 if (m_imgThumb != null)
 {
 String sFormat = m_imgThumb.getFormat();

 if (notExist(m_imgThumb) ||
 (!("JFIF".equalsIgnoreCase(sFormat)) &&
 !("GIFF".equalsIgnoreCase(sFormat))
))
 {
 m_imgThumb = IMUtil.generateThumbnail(m_iProdId, m_img, m_imgThumb);
 }

 byte[] thumbnail = getDataInByteArray(m_imgThumb);
 addThumbnail(thumbnail);
 }
 else
 {
 m_imgThumb = IMUtil.generateThumbnail(m_iProdId, m_img, m_imgThumb);
 byte[] thumbnail = getDataInByteArray(m_imgThumb);
 addThumbnail(thumbnail);
 }
 }
 }
 }
.
.
.
 boolean insertProperty() throws SQLException
 {
 boolean isFormatSupported = false;
 String sMimeType = m_img.getMimeType();

Description of the Oracle Multimedia Java API Sample Application

5-10 Oracle Multimedia User's Guide

 if (sMimeType == null)
 isFormatSupported = IMUtil.setProperties(m_img);
 else
 isFormatSupported = true;

 if (!isFormatSupported)
 {
 layoutEmpty(s_sNotSupported);
 }
 else
 {
 Object[][] data =
 {
 {"MIME Type", m_img.getMimeType()},
 {"Height", new Integer(m_img.getHeight()).toString()},
 {"Width", new Integer(m_img.getWidth()).toString()},
 {"Content Length", new Integer(m_img.getContentLength()).toString()}
 };

 .
 .
 .
 }

 return isFormatSupported;
 }
.
.
.
 static boolean notExist(OrdImage img) throws SQLException, IOException
 {
 if (img == null)
 return true;
 else
 {
 if (img.isLocal() && (img.getDataInByteArray() == null))
 return true;
 else if (!img.isLocal() && (":///".equals(img.getSource())))
 return true;
 else
 {
 if (!img.isLocal())
 {
 BFILE bfile = img.getBFILE();
 if (!bfile.fileExists())
 return true;
 else
 return false;
 }
 else
 return false;
 }
 }
 }
.
.
.
 static byte[] getDataInByteArray(OrdImage img) throws SQLException, IOException
 {
 if (notExist(img))

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-11

 return null;
 else
 {
 if (!img.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 try
 {
 img.importData(ctx);
 }
 catch (SQLException e)
 {
 new IMMessage(IMConstants.ERROR, "MEDIA_SOURCE_ERR", e);
 return null;
 }
 }
 return img.getDataInByteArray();
 }
 }
.
.
.
 void refreshPanel(boolean isFormatSupported) throws SQLException, IOException
 {
 m_hasMedia = true;
 if (isFormatSupported)
 {
 if (m_jAttrTbl == null)
 {
 m_jAttrPane.remove(m_jEmpty);
 m_jIconPane.remove(m_jIcon);

 byte[] thumbnail = getDataInByteArray(m_imgThumb);
 addThumbnail(thumbnail);

 insertProperty();
 }
 else
 {
 byte[] thumbnail = getDataInByteArray(m_imgThumb);
 changThumbnail(thumbnail);

 m_jAttrTbl.setValueAt(m_img.getMimeType(), 0, 1);
 m_jAttrTbl.setValueAt(new Integer(m_img.getHeight()).toString(), 1, 1);
 m_jAttrTbl.setValueAt(new Integer(m_img.getWidth()).toString(), 2, 1);
 m_jAttrTbl.setValueAt(new Integer(m_img.getContentLength()).toString(),3, 1);
 }
 }
 .
 .
 .
 }

5.2.3 Operations in the IMGetMetadataDialog Class
This class shows a dialog to display detailed information for metadata in a product
photograph. This class also defines the displayMetadata() method and describes what
it does.

Description of the Oracle Multimedia Java API Sample Application

5-12 Oracle Multimedia User's Guide

The displayMetadata() method retrieves metadata from the image by using the Oracle
Multimedia OrdImage getMetadata() method, and then displays the metadata.

The following code example includes the displayMetadata() method, and highlights
in bold any SQL query statements and areas in the code where Oracle Multimedia and
other Oracle object types and methods are used:

 private void displayMetadata(String sMetaType)
 {
 XMLDocument doc = null;
 try
 {
 //
 // Retrieves the metadata into an XMLType array
 //
 XMLType xmlList[] = m_img.getMetadata(sMetaType);

 if (xmlList.length == 1)
 {
 DOMParser parser = new DOMParser();
 parser.setValidationMode(XMLConstants.NONVALIDATING);
 parser.setPreserveWhitespace(false);
 parser.parse(new StringReader(XMLType.createXML(xmlList[0]).getStringVal()));
 doc = parser.getDocument();
 }
 }
 .
 .
 .
 }

5.2.4 Operations in the IMPutMetadataDialog Class
This class shows a dialog to write metadata into a product photograph. This class also
defines the writeMetadata() method and describes what it does.

The writeMetadata() method writes XMP metadata into the image metadata by using
the Oracle Multimedia OrdImage putMetadata() method.

The following code example includes the writeMetadata() method, and highlights in
bold any SQL query statements and areas in the code where Oracle Multimedia and
other Oracle object types and methods are used:

 void writeMetadata()
 {
 try
 {
 //
 // Let the StringBuffer to hold the XMP packet
 //
 StringBuffer sb = new StringBuffer(
 "<xmpMetadata xmlns=\"http://xmlns.oracle.com/ord/meta/xmp\" "
 + " xsi:schemaLocation=\"http://xmlns.oracle.com/ord/meta/xmp "
 + " http://xmlns.oracle.com/ord/meta/xmp\" "
 + " xmlns:xsi=\"http://www.w3.org/2001/XMLSchema-instance\" > "
 + " <rdf:RDF xmlns:rdf=\"http://www.w3.org/1999/02/22-rdf-syntax-ns#\"> "
 + " <rdf:Description about=\"\" xmlns:dc=\"http://purl.org/dc/elements/1.1/\"> "
);

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-13

 String str = null;
 if ((str=m_jTitleField.getText()) != null)
 sb.append("<dc:title>" + str + "</dc:title>");
 if ((str=m_jCreatorField.getText()) !=null)
 sb.append("<dc:creator>" + str + "</dc:creator>");
 if ((str=m_jDateField.getText()) !=null)
 sb.append("<dc:date>" + str + "</dc:date>");
 if ((str=m_jDescriptionField.getText()) !=null)
 sb.append("<dc:description>" + str + "</dc:description>");
 if ((str=m_jCopyrightField.getText()) !=null)
 sb.append("<dc:rights>" + str + "</dc:rights>");

 sb.append("</rdf:Description></rdf:RDF></xmpMetadata>");

 XMLType xmp = XMLType.createXML(IMExample.getDBConnection(), sb.toString(),
 "http://xmlns.oracle.com/ord/meta/xmp", true, true);

 //
 // Make sure the image data is local
 //
 if (!m_img.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 m_img.importData(ctx);
 }

 //
 // Call Ordimage.putMetadata
 //
 m_img.putMetadata(xmp, "XMP", "utf-8");

 this.dispose();
 }
 .
 .
 .
 }

5.2.5 Operations in the IMVideoPanel Class
This class displays the video panel, the product video, and its attributes. This class is
identical in structure and functions similarly to the IMImagePanel class. See
Operations in the IMImagePanel Class for descriptions of methods.

The following code example includes the display(), insertProperty(), notExist(),
getDataInByteArray(), and refreshPanel() methods, and highlights in bold any SQL
query statements and areas in the code where Oracle Multimedia and other Oracle
object types and methods are used:

 void display() throws IOException, SQLException
 {
 addControlPane();

 // Set the video icon.
 m_jIcon = new JLabel(new ImageIcon(IMExampleFrame.class.getResource("OrdVideo.gif")));
 m_jIcon.setLabelFor(m_jAttrPane);

 m_jIconPane.add(m_jIcon, BorderLayout.CENTER);

Description of the Oracle Multimedia Java API Sample Application

5-14 Oracle Multimedia User's Guide

 if (notExist())
 {
 // The video does not exist.
 m_hasMedia = false;
 layoutEmpty(s_sNotExist);
 }
 else
 {
 m_hasMedia = true;
 // If the video exists, try to show the attributes.
 insertProperty();
 }
 }
.
.
.
 boolean insertProperty() throws SQLException
 {
 boolean isFormatSupported = false;
 String sMimeType = m_vid.getMimeType();

 if (sMimeType == null)
 isFormatSupported = IMUtil.setProperties(m_vid);
 else
 isFormatSupported = true;

 if (!isFormatSupported)
 {
 layoutEmpty(s_sNotSupported);
 }
 else
 {
 Object[][] data =
 {
 {"MIME Type", m_vid.getMimeType()},
 {"Height", new Integer(m_vid.getHeight()).toString()},
 {"Width", new Integer(m_vid.getWidth()).toString()},
 {"Duration", new Integer(m_vid.getVideoDuration()).toString()},
 {"Content Length", new Integer(m_vid.getContentLength()).toString()}
 };
 .
 .
 .
 }

 return isFormatSupported;
 }
.
.
.
 boolean notExist() throws SQLException, IOException
 {
 if (m_vid == null)
 return true;
 else
 {
 if (m_vid.isLocal() && (m_vid.getDataInByteArray() == null))
 return true;
 else if (!m_vid.isLocal() && (":///".equals(m_vid.getSource())))
 return true;

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-15

 else
 {
 if (!m_vid.isLocal())
 {
 BFILE bfile = m_vid.getBFILE();
 if (!bfile.fileExists())
 return true;
 else
 return false;
 }
 else
 return false;
 }
 }
 }
.
.
.
 byte[] getDataInByteArray(OrdVideo vid) throws SQLException, IOException
 {
 if (!m_hasMedia)
 return null;
 else
 {
 if (!vid.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 try
 {
 vid.importData(ctx);
 }
 catch (SQLException e)
 {
 new IMMessage(IMConstants.ERROR, "MEDIA_SOURCE_ERR", e);
 return null;
 }
 }
 return vid.getDataInByteArray();
 }
 }
.
.
.
 void refreshPanel(boolean isFormatSupported) throws SQLException, IOException
 {
 m_hasMedia = true;

 if (isFormatSupported)
 {
 if (m_jAttrTbl == null)
 {
 m_jAttrPane.remove(m_jEmpty);
 insertProperty();
 }
 else
 {
 m_jAttrTbl.setValueAt(m_vid.getMimeType(), 0, 1);
 m_jAttrTbl.setValueAt(new Integer(m_vid.getHeight()).toString(), 1, 1);
 m_jAttrTbl.setValueAt(new Integer(m_vid.getWidth()).toString(), 2, 1);
 m_jAttrTbl.setValueAt(new Integer(m_vid.getVideoDuration()).toString(), 3, 1);

Description of the Oracle Multimedia Java API Sample Application

5-16 Oracle Multimedia User's Guide

 m_jAttrTbl.setValueAt(new Integer(m_vid.getContentLength()).toString(), 4, 1);
 }
 }
 .
 .
 .
 }

5.2.6 Operations in the IMAudioPanel Class
This class displays the audio panel, the product audio, and its attributes. This class is
identical in structure and functions similarly to the IMImagePanel class. See
Operations in the IMImagePanel Class for descriptions of methods.

The following code example includes the display(), insertProperty(), notExist(),
getDataInByteArray(), and refreshPanel() methods, and highlights in bold any SQL
query statements and areas in the code where Oracle Multimedia and other Oracle
object types and methods are used:

 void display() throws IOException, SQLException
 {
 addControlPane();

 // Set the audio icon.
 m_jIcon = new JLabel(new ImageIcon(IMExampleFrame.class.getResource("OrdAudio.gif")));
 m_jIcon.setLabelFor(m_jAttrPane);

 m_jIconPane.add(m_jIcon, BorderLayout.CENTER);

 if (notExist())
 {
 // The audio does not exist.
 m_hasMedia = false;
 layoutEmpty(s_sNotExist);
 }
 else
 {
 m_hasMedia = true;

 // If the audio exists, try to show the attributes.
 insertProperty();
 }
 }
.
.
.
 boolean insertProperty() throws SQLException
 {
 boolean isFormatSupported = false;
 String sMimeType = m_aud.getMimeType();

 if (sMimeType == null)
 isFormatSupported = IMUtil.setProperties(m_aud);
 else
 isFormatSupported = true;

 if (!isFormatSupported)
 {
 layoutEmpty(s_sNotSupported);

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-17

 }
 else
 {
 Object[][] data =
 {
 {"MIME Type", m_aud.getMimeType()},
 {"Duration", new Integer(m_aud.getAudioDuration()).toString()},
 {"Content Length", new Integer(m_aud.getContentLength()).toString()}
 };

 .
 .
 .
 }

 return isFormatSupported;
 }
.
.
.
 boolean notExist() throws SQLException, IOException
 {
 if (m_aud == null)
 return true;
 else
 {
 if (m_aud.isLocal() && (m_aud.getDataInByteArray() == null))
 return true;
 else if (!m_aud.isLocal() && (":///".equals(m_aud.getSource())))
 return true;
 else
 {
 if (!m_aud.isLocal())
 {
 BFILE bfile = m_aud.getBFILE();
 if (!bfile.fileExists())
 return true;
 else
 return false;
 }
 else
 return false;
 }
 }
 }
.
.
.
 byte[] getDataInByteArray(OrdAudio aud) throws SQLException, IOException
 {
 if (!m_hasMedia)
 return null;
 else
 {
 if (!aud.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 try
 {
 aud.importData(ctx);

Description of the Oracle Multimedia Java API Sample Application

5-18 Oracle Multimedia User's Guide

 }
 catch (SQLException e)
 {
 new IMMessage(IMConstants.ERROR, "MEDIA_SOURCE_ERR", e);
 return null;
 }
 }
 return aud.getDataInByteArray();
 }
 }
.
.
.
 void refreshPanel(boolean isFormatSupported) throws SQLException, IOException
 {
 m_hasMedia = true;
 if (isFormatSupported)
 {
 if (m_jAttrTbl == null)
 {
 m_jAttrPane.remove(m_jEmpty);
 insertProperty();
 }
 else
 {
 m_jAttrTbl.setValueAt(m_aud.getMimeType(), 0, 1);
 m_jAttrTbl.setValueAt(new Integer(m_aud.getAudioDuration()).toString(), 1, 1);
 m_jAttrTbl.setValueAt(new Integer(m_aud.getContentLength()).toString(), 2, 1);
 }
 }
 .
 .
 .
 }

5.2.7 Operations in the IMDocPanel Class
This class displays the doc panel, the product testimonials, and its attributes. This class
is identical in structure and functions similarly to the IMImagePanel class. See
Operations in the IMImagePanel Class for descriptions of methods.

The following code example includes the display(), insertProperty(), notExist(),
getDataInByteArray(), and refreshPanel() methods, and highlights in bold any SQL
query statements and areas in the code where Oracle Multimedia and other Oracle
object types and methods are used:

 void display() throws IOException, SQLException
 {
 addControlPane();

 // Set the icon.
 m_jIcon = new JLabel(new ImageIcon(
 IMExampleFrame.class.getResource("OrdDoc.gif")
));
 m_jIcon.setLabelFor(m_jAttrPane);
 m_jIconPane.add(m_jIcon, BorderLayout.CENTER);

 if (notExist())
 {

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-19

 // The doc does not exist.
 m_hasMedia = false;
 layoutEmpty(s_sNotExist);
 }
 else
 {
 // If the doc exists, show the attribute table.
 m_hasMedia = true;
 insertProperty();
 }
 }
.
.
.
 boolean insertProperty() throws SQLException
 {
 boolean isFormatSupported = false;
 String sMimeType = m_doc.getMimeType();

 if (sMimeType == null)
 isFormatSupported = IMUtil.setProperties(m_doc);
 else
 isFormatSupported = true;

 if (!isFormatSupported)
 {
 layoutEmpty(s_sNotSupported);
 }
 else
 {
 Object[][] data =
 {
 {"MIME Type", m_doc.getMimeType()},
 {"Content Length", new Integer(m_doc.getContentLength()).toString()}
 };

 .
 .
 .
 }

 return isFormatSupported;
 }
.
.
.
 boolean notExist() throws SQLException, IOException
 {
 if (m_doc == null)
 return true;
 else
 {
 if (m_doc.isLocal() && (m_doc.getDataInByteArray() == null))
 return true;
 else if (!m_doc.isLocal() && (":///".equals(m_doc.getSource())))
 return true;
 else
 {
 if (!m_doc.isLocal())
 {

Description of the Oracle Multimedia Java API Sample Application

5-20 Oracle Multimedia User's Guide

 BFILE bfile = m_doc.getBFILE();
 if (!bfile.fileExists())
 return true;
 else
 return false;
 }
 else
 return false;
 }
 }
 }
.
.
.
 byte[] getDataInByteArray(OrdDoc doc) throws SQLException, IOException
 {
 if (!m_hasMedia)
 return null;
 else
 {
 if (!doc.isLocal())
 {
 byte[] ctx[] = new byte[1][4000];
 try
 {
 doc.importData(ctx, false);
 }
 catch (SQLException e)
 {
 new IMMessage(IMConstants.ERROR, "MEDIA_SOURCE_ERR", e);
 return null;
 }
 }
 return doc.getDataInByteArray();
 }
 }
.
.
.
 void refreshPanel(boolean isFormatSupported) throws SQLException, IOException
 {
 m_hasMedia = true;
 if (isFormatSupported)
 {
 if (m_jAttrTbl == null)
 {
 m_jAttrPane.remove(m_jEmpty);
 insertProperty();
 }
 else
 {
 m_jAttrTbl.setValueAt(m_doc.getMimeType(), 0, 1);
 m_jAttrTbl.setValueAt(new Integer(m_doc.getContentLength()).toString(), 1, 1);
 }
 }
.
.
.
 }

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-21

5.2.8 Operations in the IMLoadFile Class
This class loads a media stream from a file to a database for each of the media object
types. First, it checks whether this PRODUCT_ID column exists in the PM.ONLINE_
MEDIA table and if not, it inserts a new row into the table. Then, it creates and
initializes a new media object for each media object type, updates the media data, that
is, loads it into the database if it is not already stored there, and finally, sets the media
attributes for each media data object.

In this class, the IMFileLoad() method calls the initFileChooser() method, then the
initFileChooser() method calls the loadNewMedia() method, which does the row
insertion and initializing of the media object type columns, and then calls the
updateMedia() method to update the media and to set the media attributes.

The following code example includes the loadNewMedia() and UpdateMedia()
methods, and highlights in bold any SQL query statements and areas in the code
where Oracle Multimedia and other Oracle object types and methods are used as
previously described:

 private void loadNewMedia()
 throws SQLException, FileNotFoundException, SecurityException, IOException
 {
 boolean isInsertNeeded = false;
 String sQuery = null;
 OracleConnection conn = null;
 OracleResultSet rs = null;
 OraclePreparedStatement pstmt = null;

 try
 {
 conn = IMExample.getDBConnection();

 if (m_obj == null)
 {
 // First, check whether or not this product exists in the
 // pm.online_media table. If it exists, isInsertNeeded is set to false;
 // or else, isInsertNeeded is set to true.
 sQuery = new String(
 "select product_id from pm.online_media where product_id = ?");
 pstmt = (OraclePreparedStatement) conn.prepareStatement(sQuery);
 pstmt.setInt(1, m_iProdId);
 rs = (OracleResultSet)pstmt.executeQuery();
 if (rs.next() == false)
 isInsertNeeded = true;
 else
 isInsertNeeded = false;
 rs.close();
 pstmt.close();

 if (isInsertNeeded)
 {
 // If this product is not in the pm.online_media table,
 // insert a row in pm.online_media for this product,
 // and initialize the media object at the same time.
 sQuery = new String(
 "insert into pm.online_media (product_id, product_photo, " +
 "product_photo_signature, product_thumbnail, product_video, " +
 "product_audio, product_text, product_testimonials) values (" +
 "?, ORDSYS.ORDImage.init(), ORDSYS.ORDImageSignature.init(), " +
 "ORDSYS.ORDImage.init(), ORDSYS.ORDVideo.init(), " +

Description of the Oracle Multimedia Java API Sample Application

5-22 Oracle Multimedia User's Guide

 "ORDSYS.ORDAudio.init(), null, ORDSYS.ORDDoc.init())");

 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setInt(1, m_iProdId);
 pstmt.execute();
 pstmt.close();
 }
 }

 if (!isInsertNeeded)
 {
 // Create a new media object.
 switch (m_iTypeIdentifier)
 {
 case IMG_TYPE:
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ORDSYS.ORDImage.init() where product_id = ?");
 break;
 case AUD_TYPE:
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ORDSYS.ORDAudio.init() where product_id = ?");
 break;
 case VID_TYPE:
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ORDSYS.ORDVideo.init() where product_id = ?");
 break;
 case DOC_TYPE:
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ORDSYS.ORDDoc.init() where product_id = ?");
 break;
 default:
 new IMMessage(IMConstants.ERROR, "UNKNOWN_TYPE");
 break;
 }

 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setInt(1, m_iProdId);
 pstmt.execute();
 pstmt.close();
 }

 // At this point, there is a row in the online_media table
 // for this product and the desired media object is initialized.
 // In the following, we update the media object pointer and
 // acquire the right to modify it by selecting again from the
 // database.
 //
 sQuery = new String(
 "select " + m_sColName +
 " from pm.online_media where product_id = ? for update");
 pstmt = (OraclePreparedStatement) conn.prepareStatement(sQuery);
 pstmt.setInt(1, m_iProdId);
 rs = (OracleResultSet)pstmt.executeQuery();
 if (rs.next() == false)
 throw new SQLException();
 else

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-23

 {
 switch (m_iTypeIdentifier)
 {
 case IMG_TYPE:
 m_img = (OrdImage)rs.getORAData(1, OrdImage.getORADataFactory());
 break;
 case AUD_TYPE:
 m_aud = (OrdAudio)rs.getORAData(1, OrdAudio.getORADataFactory());
 break;
 case VID_TYPE:
 m_vid = (OrdVideo)rs.getORAData(1, OrdVideo.getORADataFactory());
 break;
 case DOC_TYPE:
 m_doc = (OrdDoc)rs.getORAData(1, OrdDoc.getORADataFactory());
 break;
 default:
 new IMMessage(IMConstants.ERROR, "UNKNOWN_TYPE");
 break;
 }

 // Update the media object.
 updateMedia();
 }

 rs.close();
 pstmt.close();
 }
 finally
 {
 IMUtil.cleanup(rs, pstmt);
 }
 }

 /**
 * Update the media and also set the media properties.
 */
 private void updateMedia()
 throws SQLException, FileNotFoundException, SecurityException, IOException
 {
 String sQuery = null;
 OracleConnection conn = null;
 byte[] ctx[] = new byte[1][64];
 OraclePreparedStatement pstmt = null;

 boolean isFormatSupported = false;

 try
 {
 conn = IMExample.getDBConnection();
 sQuery = new String(
 "update pm.online_media set " + m_sColName +
 " = ? where product_id = ?");
 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setInt(2, m_iProdId);

 switch (m_iTypeIdentifier)
 {
 case IMG_TYPE:
 m_img.loadDataFromFile(m_jFileChooser.getText());
 isFormatSupported = IMUtil.setProperties(m_img);

Description of the Oracle Multimedia Java API Sample Application

5-24 Oracle Multimedia User's Guide

 m_img.setLocal();
 pstmt.setORAData(1, m_img);
 break;
 case AUD_TYPE:
 m_aud.loadDataFromFile(m_jFileChooser.getText());
 isFormatSupported = IMUtil.setProperties(m_aud);
 m_aud.setLocal();
 pstmt.setORAData(1, m_aud);

 // We need to update the media pointer for display,
 // because the input media pointer may be null.
 ((IMAudioPanel)m_parent).setMedia(m_aud);
 ((IMAudioPanel)m_parent).refreshPanel(isFormatSupported);
 break;
 case VID_TYPE:
 m_vid.loadDataFromFile(m_jFileChooser.getText());
 isFormatSupported = IMUtil.setProperties(m_vid);
 m_vid.setLocal();
 pstmt.setORAData(1, m_vid);

 ((IMVideoPanel)m_parent).setMedia(m_vid);
 ((IMVideoPanel)m_parent).refreshPanel(isFormatSupported);
 break;
 case DOC_TYPE:
 m_doc.loadDataFromFile(m_jFileChooser.getText());
 isFormatSupported = IMUtil.setProperties(m_doc);
 m_doc.setLocal();
 pstmt.setORAData(1, m_doc);

 ((IMDocPanel)m_parent).setMedia(m_doc);
 ((IMDocPanel)m_parent).refreshPanel(isFormatSupported);
 break;
 default:
 new IMMessage(IMConstants.ERROR, "UNKNOWN_TYPE");
 break;
 }

 pstmt.execute();
 pstmt.close();

 // Update the thumbnail image.
 if (m_iTypeIdentifier == IMG_TYPE)
 {
 if (isFormatSupported)
 m_imgThumb = IMUtil.generateThumbnail(m_iProdId, m_img, m_imgThumb);

 ((IMImagePanel)m_parent).setMedia(m_img, m_imgThumb);
 ((IMImagePanel)m_parent).refreshPanel(isFormatSupported);
 }
 }
 finally
 {
 IMUtil.cleanup(pstmt);
 }
 }

5.2.9 Operations in the IMUtil Class
This class contains common utilities, such as a generateThumbnail() static method,
wrapper methods for the setProperties() methods for each media object type to

Description of the Oracle Multimedia Java API Sample Application

Oracle Multimedia Java API Sample Application 5-25

separate the exceptions caused by unrecognizable formats, and finally, several cleanup
methods.

The following code example includes the generateThumbnail() method, and
highlights in bold any SQL query statements and areas in the code where Oracle
Multimedia and other Oracle object types and methods are used:

static OrdImage generateThumbnail(int iProdId, OrdImage img, OrdImage imgThumb)
 throws SQLException
 {
 String sQuery = null;
 OracleConnection conn = null;
 OracleResultSet rs = null;
 OraclePreparedStatement pstmt = null;

 try
 {
 conn = IMExample.getDBConnection();

 if (imgThumb == null)
 {
 // The thumbnail media pointer is not initialized.
 // Initialize it first.
 sQuery = new String(
 "update pm.online_media set product_thumbnail = " +
 "ORDSYS.ORDImage.init() where product_id = ?");
 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setInt(1, iProdId);
 pstmt.execute();
 pstmt.close();

 // Acquire the new pointer and the permission to update.
 sQuery = new String("select product_thumbnail from pm.online_media " +
 "where product_id = ? for update");
 pstmt = (OraclePreparedStatement) conn.prepareStatement(sQuery);
 pstmt.setInt(1, iProdId);
 rs = (OracleResultSet)pstmt.executeQuery();
 if (rs.next() == false)
 throw new SQLException();
 else
 imgThumb = (OrdImage)rs.getORAData(1, OrdImage.getORADataFactory());

 rs.close();
 pstmt.close();
 }

 // Generate the thumbnail image.
 img.processCopy("maxScale=64 64, fileFormat=GIFF", imgThumb);

 // Update the thumbnail image in the database.
 sQuery = new String(
 "update pm.online_media set product_thumbnail = ? where product_id = ?");
 pstmt = (OraclePreparedStatement) conn.prepareCall(sQuery);
 pstmt.setORAData(1, imgThumb);
 pstmt.setInt(2, iProdId);
 pstmt.execute();
 pstmt.close();

 return imgThumb;
 }

Description of the Oracle Multimedia Java API Sample Application

5-26 Oracle Multimedia User's Guide

 finally
 {
 IMUtil.cleanup(rs, pstmt);
 }
 }

6

Working with Metadata in Oracle Multimedia Images 6-1

6 Working with Metadata in Oracle Multimedia
Images

Image files can contain information about the content of the images, the image rasters,
and image metadata. In general, data about data is referred to as metadata. In this
case, metadata refers to additional information about the actual images, which is
stored in the image files along with the images.

This chapter includes these sections:

■ Metadata Concepts on page 6-1

■ Oracle Multimedia Image Metadata Concepts on page 6-2

■ Image File Formats on page 6-2

■ Image Metadata Formats on page 6-2

■ Representing Metadata Outside Images on page 6-3

■ Oracle Multimedia Image Metadata Examples on page 6-3

■ Metadata References on page 6-7

6.1 Metadata Concepts
Several types of metadata can be stored in an image file, and each type can serve a
different purpose. One type, technical metadata, is used to describe an image in a
technical sense. For example, technical metadata can include attributes about an
image, such as its height and width, in pixels, or the type of compression used to store
it. Another type, content metadata, can further describe the content of an image, the
name of the photographer, and the date and time when a photograph was taken.

Metadata is stored in image files using a variety of mechanisms. Digital cameras and
scanners automatically insert metadata into the images they create. Digital photograph
processing applications like Adobe Photoshop enable users to add or edit metadata to
be stored with the image. Annotating digital images with additional metadata is a
common practice in photographic and news gathering applications, for image
archiving usages, and at the consumer level.

Storing metadata with image data in the same containing file provides encapsulation.
With encapsulation, both types of data can be shared and exchanged reliably as one
unit. Metadata that is stored in the image file format is referred to as embedded
metadata.

Oracle Multimedia Image Metadata Concepts

6-2 Oracle Multimedia User's Guide

6.2 Oracle Multimedia Image Metadata Concepts
For a large number of image file formats, Oracle Multimedia can extract and manage a
limited set of metadata attributes. These attributes include: height, width,
contentLength, fileFormat, contentFormat, compressionFormat, and mimeType. For a
limited number of image file formats, Oracle Multimedia can extract a rich set of
metadata attributes. This metadata is represented in schema-based XML documents.
These XML documents can be stored in a database, indexed, searched, updated, and
made available to applications using the standard mechanisms of Oracle Database.

Oracle Multimedia can also write or embed metadata supplied by users into a limited
number of image file formats. The application provides the metadata as a
schema-based XML document. Oracle Multimedia processes the XML document and
writes the metadata into the image file.

6.3 Image File Formats
Oracle Multimedia supports metadata extraction and metadata embedding for the GIF,
TIFF, and JPEG file formats.

6.4 Image Metadata Formats
The term image metadata format refers to the standard protocols and techniques used
to store image metadata within an image file. The following subsections describe the
embedded image metadata formats supported by Oracle Multimedia:

■ EXIF

■ IPTC–IIM

■ XMP

6.4.1 EXIF
The Exchangeable Image File Format (EXIF) is the standard for image file storage for
digital still cameras. It was developed by the Japan Electronic Industry Development
Association (JEIDA) as a standard way of storing images created by digital cameras
and metadata about the images. EXIF image metadata can be stored in TIFF and JPEG
format images. Oracle Multimedia supports the extraction of EXIF metadata from TIFF
and JPEG file formats.

6.4.2 IPTC–IIM
The International Press Telecommunications Council-Information Interchange Model
(IPTC-IIM) Version 4 is a standard developed jointly by the International Press
Telecommunications Council and the Newspaper Association of America. This
metadata standard is designed to capture information that is important to the activities
of news gathering, reporting, and publishing. These information records are
commonly referred to as IPTC tags.

The use of embedded IPTC tags in image file formats became widespread with the use
of the Adobe Photoshop tool for image editing. IPTC metadata can be stored in TIFF

See Also:

Oracle Multimedia Reference for information about the image file
formats supported by Oracle Multimedia

Oracle Multimedia Image Metadata Examples

Working with Metadata in Oracle Multimedia Images 6-3

and JPEG format images. Oracle Multimedia supports the extraction of IPTC metadata
from TIFF and JPEG file formats.

6.4.3 XMP
The Extensible Metadata Platform (XMP) is a standard metadata format, developed by
Adobe, for the creation, processing, and interchange of metadata in a variety of
applications. XMP uses Resource Description Framework (RDF) technology for data
modeling. XMP also defines how the data model is serialized (converted to a byte
stream), and embedded within an image file. Oracle Multimedia supports the
extraction of XMP metadata from GIF, TIFF, and JPEG file formats. Oracle Multimedia
also supports writing XMP data packets into GIF, TIFF, and JPEG file formats.

6.5 Representing Metadata Outside Images
After metadata has been extracted from the binary image file, the next step is to
represent the metadata in a form that can be easily stored, indexed, queried, updated,
and presented. Oracle Multimedia returns image metadata in XML documents. These
documents are based on XML schemas that Oracle Multimedia registers with the
database. Each type of image metadata has a separate XML schema. These XML
schemas are used by the metadata methods of the ORDImage object type.

The XML documents can be stored in XMLType columns within the database. These
documents are easily searched and processed using the wide range of standards-based
XML technologies provided by Oracle XML DB.

6.6 Oracle Multimedia Image Metadata Examples
The following examples of metadata extraction and embedding use the photos table,
which is defined by the Photo Album sample application. The implementation of the
Photo Album sample application is defined in the PL/SQL package PHOTO_ALBUM.
See Section 3.1 for a complete description of the Oracle Multimedia PL/SQL Web
Toolkit Photo Album sample application.

The photos table stores two instances of an image: the full-size photograph and a
thumbnail image. This table can also store up to four different image metadata
documents. These documents are stored in the columns named metaORDImage,
metaEXIF, metaIPTC, and metaXMP, and represent image metadata from the
ORDImage, EXIF, IPTC, and XMP metadata formats, respectively. The metadata
columns are of type XMLType, and they are bound to the corresponding metadata
XML schemas that Oracle Multimedia provides.

See Also:

■ http://www.adobe.com/ for more information about the
Extensible Metadata Platform

■ http://www.w3.org/RDF/ for more information about
Resource Description Framework technology

See Also:

■ Oracle Multimedia Reference for complete definitions of the XML
schemas supported by Oracle Multimedia

■ Oracle XML DB Developer's Guide for more information about the
XML technologies provided by Oracle XML DB

Oracle Multimedia Image Metadata Examples

6-4 Oracle Multimedia User's Guide

The following subsections describe some operations you can perform with image
metadata:

■ Creating a Table for Metadata Storage

■ Extracting Image Metadata

■ Embedding Image Metadata

6.6.1 Creating a Table for Metadata Storage
Before you can extract or embed metadata, you must create the table and columns
where the metadata is to be stored. The following PL/SQL code segment creates the
photos table with four XMLTYPE columns (metaORDImage, metaEXIF, metaIPTC,
and metaXMP) to store each type of image metadata, and two ORDIMAGE columns
(image and thumb) for the original image and the thumbnail image, respectively. Each
metadata column is bound to its corresponding metadata schema. For example, the
metaEXIF column is bound to the XML schema stored at
http://xmlns.oracle.com/ord/meta/exif, and is defined as the XML element
exifMetadata.

The code statements where the image metadata columns are defined and bound to
XML schemas are highlighted in bold.

--
-- Create the PHOTOS table
--
CREATE TABLE photos(id NUMBER PRIMARY KEY,
 description VARCHAR2(40) NOT NULL,
 metaORDImage XMLTYPE,
 metaEXIF XMLTYPE,
 metaIPTC XMLTYPE,
 metaXMP XMLTYPE,
 image ORDSYS.ORDIMAGE,
 thumb ORDSYS.ORDIMAGE)
--
-- store full-size images and thumbnail images as SecureFile LOBs
--
LOB(image.source.localdata) STORE AS SECUREFILE
LOB(thumb.source.localdata) STORE AS SECUREFILE
-- and bind the XMLType columns to the Oracle Multimedia metadata schemas
XMLType COLUMN metaORDImage
 XMLSCHEMA "http://xmlns.oracle.com/ord/meta/ordimage"
 ELEMENT "ordImageAttributes"
XMLType COLUMN metaEXIF
 XMLSCHEMA "http://xmlns.oracle.com/ord/meta/exif"
 ELEMENT "exifMetadata"
XMLType COLUMN metaIPTC
 XMLSCHEMA "http://xmlns.oracle.com/ord/meta/iptc"
 ELEMENT "iptcMetadata"
XMLType COLUMN metaXMP
 XMLSCHEMA "http://xmlns.oracle.com/ord/meta/xmp"
 ELEMENT "xmpMetadata";

6.6.2 Extracting Image Metadata
The following PL/SQL procedure extracts metadata from an image and stores it in the
specified columns in the photos table you created. This procedure demonstrates the
getMetadata() method, which returns an array of XML documents. The root element

Oracle Multimedia Image Metadata Examples

Working with Metadata in Oracle Multimedia Images 6-5

of each document is examined to determine the metadata type. The UPDATE
statement stores the documents in the corresponding columns in the photos table.

The code statement where the getMetadata() method is called is highlighted in bold.

--
-- fetch the metadata and sort the results
--
PROCEDURE extractMetadata(inID IN INTEGER)
IS
 img ORDSYS.ORDIMAGE;
 metav XMLSequenceType;
 meta_root VARCHAR2(40);
 xmlORD XMLType;
 xmlXMP XMLType;
 xmlEXIF XMLType;
 xmlIPTC XMLType;

BEGIN

-- select the image
SELECT image
INTO img
FROM PHOTOS
WHERE id = inID;

-- extract all the metadata
metav := img.getMetadata('ALL');

-- process the result array to discover what types of metadata were
returned
FOR i IN 1..metav.count() LOOP
 meta_root := metav(i).getRootElement();
 CASE meta_root
 WHEN 'ordImageAttributes' THEN xmlORD := metav(i);
 WHEN 'xmpMetadata' THEN xmlXMP := metav(i);
 WHEN 'iptcMetadata' THEN xmlIPTC := metav(i);
 WHEN 'exifMetadata' THEN xmlEXIF := metav(i);
 ELSE NULL;
 END CASE;
END LOOP;

-- Update metadata columns
--
UPDATE photos
SET metaORDImage = xmlORD,
 metaEXIF = xmlEXIF,
 metaIPTC = xmlIPTC,
 metaXMP = xmlXMP
WHERE id = inID;

END extractMetadata;

6.6.3 Embedding Image Metadata
The following PL/SQL procedure demonstrates the putMetadata() method. This
procedure accepts six arguments. The entry_id argument identifies the image in the
photos table to be updated. The remaining arguments (title, creator, date,
description, and copyright) are strings to be formatted into an XMP packet and
embedded within the target image.

Oracle Multimedia Image Metadata Examples

6-6 Oracle Multimedia User's Guide

This example creates an XML document instance based on the Oracle Multimedia
XML schema for XMP metadata. (This schema is preregistered with Oracle XML DB.
See Oracle XML DB Developer's Guide for more information.) The schema for XMP
metadata defines a single, global element <xmpMetadata>. The <xmpMetadata>
element contains a single, well-formed RDF document. The RDF document contains a
single <RDF> element, which is derived from the rdf namespace. This RDF document
is constructed using elements defined by the Dublin Core Schema.

The call to the putMetadata() method embeds the metadata document into the image
file. The UPDATE statement stores the new image and the new metadata back in the
photos table.

The code statement where the putMetadata() method is called is highlighted in bold.

--
-- write the metadata to the image
--
PROCEDURE write_metadata(entry_id IN VARCHAR2,
 title IN VARCHAR2,
 creator IN VARCHAR2,
 date IN VARCHAR2,
 description IN VARCHAR2,
 copyright IN VARCHAR2)
IS
 img ORDSYS.ORDImage;
 xmp XMLType;
 buf VARCHAR2(5000);
BEGIN
-- select the image
SELECT image
INTO img
FROM PHOTOS
WHERE id = entry_id FOR UPDATE;

-- Create the XMP packet it must be schema valid
-- to "http://xmlns.oracle.com/ord/meta/xmp"
-- and contain an <RDF> element. This example uses
-- the Dublin Core schema.

/* An example XML instance document

<xmpMetadata xmlns="http://xmlns.oracle.com/ord/meta/xmp"
 xsi:schemaLocation="http://xmlns.oracle.com/ord/meta/xmp
 http://xmlns.oracle.com/ord/meta/xmp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">
 <dc:title>A Winter Day</dc:title>
 <dc:creator>Frosty S. Man</dc:creator>
 <dc:date>21-Dec-2004</dc:date>
 <dc:description>a sleigh ride</dc:description>
 <dc:copyright>North Pole Inc.</dc:copyright>
 </rdf:Description>
 </rdf:RDF>
</xmpMetadata>

*/

buf := '<xmpMetadata xmlns="http://xmlns.oracle.com/ord/meta/xmp"
 xsi:schemaLocation="http://xmlns.oracle.com/ord/meta/xmp

Metadata References

Working with Metadata in Oracle Multimedia Images 6-7

 http://xmlns.oracle.com/ord/meta/xmp"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" >
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <rdf:Description about="" xmlns:dc="http://purl.org/dc/elements/1.1/">';

IF title IS NOT NULL THEN
 buf := buf || '<dc:title>' || htf.escape_sc(title) || '</dc:title>';
END IF;

IF creator IS NOT NULL THEN
 buf := buf || '<dc:creator>' || htf.escape_sc(creator)
 || '</dc:creator>';
END IF;
IF date IS NOT NULL THEN
 buf := buf || '<dc:date>' || htf.escape_sc(date)
 || '</dc:date>';
END IF;
IF description IS NOT NULL THEN
 buf := buf || '<dc:description>' || htf.escape_sc(description)
 || '</dc:description>';
END IF;
IF copyright IS NOT NULL THEN
 buf := buf || '<dc:copyright>' || htf.escape_sc(copyright)
 || '</dc:copyright>';
END IF;

buf := buf || '
 </rdf:Description>
 </rdf:RDF>
 </xmpMetadata>';

-- create the XML document
xmp := XMLType.createXML(buf, 'http://xmlns.oracle.com/ord/meta/xmp');

-- write the metadata
img.putMetadata(xmp, 'XMP');

-- update the image
UPDATE photos
SET image = img,
 metaXMP = xmp
WHERE id = entry_id;

END write_Metadata;

6.7 Metadata References
The following Web sites provide information about standards and technologies related
to working with metadata in images.

■ Dublin Core, a standard schema for Dublin core elements

http://dublincore.org/2003/03/24/dces

■ Extensible Metadata Platform (XMP)

http://www.adobe.com/

■ Resource Description Framework (See RDF Primer)

http://www.w3.org/RDF/

Metadata References

6-8 Oracle Multimedia User's Guide

7

Extending Oracle Multimedia 7-1

7 Extending Oracle Multimedia

Oracle Multimedia can be extended to support:

■ Other external sources of media data not currently supported

■ Other media data formats not currently supported

■ A new object type

■ Media (audio and video) data processing

For each unique external media data source or each unique ORDAudio, ORDDoc, or
ORDVideo data format you want to support, you must:

1. Design your new data source or new ORDAudio, ORDDoc, or ORDVideo data
format.

2. Implement your new data source or new ORDAudio, ORDDoc, or ORDVideo data
format.

3. Install your new plug-in into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in to PUBLIC.

This chapter includes these sections:

■ Supporting Other External Sources on page 7-1

■ Supporting Other Media Data Formats on page 7-8

■ Extending Oracle Multimedia with a New Type on page 7-15

■ Supporting Media Data Processing on page 7-16

7.1 Supporting Other External Sources
To implement your new data source, you must implement the required interfaces in
the ORDX_<srcType>_SOURCE package in the ORDPLUGINS schema (where
<srcType> represents the name of the new external source type). Use the package
body example in Section 7.1.1.3 as a template to create the package body. Then, set the
source type parameter in the setSourceInformation() call to the appropriate source
value to indicate to the ORDAudio, ORDImage, ORDDoc, or ORDVideo object that
package ORDPLUGINS.ORDX_<srcType>_SOURCE is available as a plug-in. Use the
ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_SOURCE
packages as guides when you extend support to other external audio, image, video, or
other heterogeneous media data sources.

The following subsection presents reference information on the packages or PL/SQL
plug-ins provided:

Supporting Other External Sources

7-2 Oracle Multimedia User's Guide

■ Packages or PL/SQL Plug-ins

7.1.1 Packages or PL/SQL Plug-ins
Plug-ins must be named as ORDX_<name>_<module_name> where the <module_
name> is SOURCE for ORDSource. For example, the FILE plug-in described in
Section 7.1.1.1 is named ORDX_FILE_SOURCE and the HTTP plug-in described in
Section 7.1.1.2 is named ORDX_HTTP_SOURCE and <name> is the source type. Both
source type names, FILE and HTTP, are reserved to Oracle.

Use the ORDPLUGINS.ORDX_FILE_SOURCE and ORDPLUGINS.ORDX_HTTP_SOURCE
packages as a guide in developing your new source type package.

The following subsections provide examples and more information about extending
the supported external sources of audio, image, video, or other heterogeneous media
data:

■ ORDPLUGINS.ORDX_FILE_SOURCE Package

■ ORDPLUGINS.ORDX_HTTP_SOURCE Package

■ Extending Oracle Multimedia to Support a New Data Source

7.1.1.1 ORDPLUGINS.ORDX_FILE_SOURCE Package
The ORDPLUGINS.ORDX_FILE_SOURCE package or PL/SQL plug-in provides
support for multimedia stored in the local file system external to the database.

CREATE OR REPLACE PACKAGE ORDX_FILE_SOURCE AS
 -- functions/procedures
 FUNCTION processCommand(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 slob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,

Supporting Other External Sources

Extending Oracle Multimedia 7-3

 name IN VARCHAR2);
 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW),
 RETURN INTEGER;
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS);
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);

 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource,
 userArg IN RAW,
 ctx OUT RAW) RETURN INTEGER;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER;
PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
END ORDX_FILE_SOURCE;
/

Table 7–1 shows the methods supported in the ORDX_FILE_SOURCE package and the
exceptions raised if you call a method that is not supported.

Table 7–1 Methods Supported in the ORDPLUGINS.ORDX_FILE_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Supported

getContentLength Supported

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Supported

write Not supported - raises exception: METHOD_NOT_SUPPORTED

Supporting Other External Sources

7-4 Oracle Multimedia User's Guide

7.1.1.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package
The ORDPLUGINS.ORDX_HTTP_SOURCE package or PL/SQL plug-in provides
support for multimedia stored in any HTTP server and accessed through a URL.

CREATE OR REPLACE PACKAGE ORDX_HTTP_SOURCE AS
 -- functions/procedures
 FUNCTION processCommand(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2);
 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW)
 RETURN INTEGER;
 PRAGMA RESTRICT_REFERENCES(getContentLength, WNDS, WNPS, RNDS, RNPS, TRUST);
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2;
 PRAGMA RESTRICT_REFERENCES(getSourceAddress, WNDS, WNPS, RNDS, RNPS);
 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW,
 ctx OUT RAW) RETURN INTEGER;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER) RETURN INTEGER;
 PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);

Supporting Other External Sources

Extending Oracle Multimedia 7-5

 PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW);
END ORDX_HTTP_SOURCE;
/

Table 7–2 shows the methods supported in the ORDX_HTTP_SOURCE package and the
exceptions raised if you call a method that is not supported.

7.1.1.3 Extending Oracle Multimedia to Support a New Data Source
Extending Oracle Multimedia to support a new data source consists of these steps:

1. Design your new data source.

2. Implement your new data source and name it, for example, ORDX_MY_
SOURCE.SQL.

3. Install your new ORDX_MY_SOURCE.SQL plug-in into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_
SOURCE.SQL plug-in to PUBLIC.

5. Set the srctype to my to cause your plug-in to be invoked.

A package body listing is provided in Example 7–1 to assist you in this operation. Add
your variables to the places that say "--Your variables go here" and add your code to
the places that say "--Your code goes here".

Example 7–1 Package Body for Extending Support to a New Data Source

CREATE OR REPLACE PACKAGE BODY ORDX_MY_SOURCE
AS
 -- functions/procedures
 FUNCTION processCommand(
 obj IN OUT NOCOPY ORDSYS.ORDSource,

Table 7–2 Methods Supported in the ORDPLUGINS.ORDX_HTTP_SOURCE Package

Name of Method Level of Support

processCommand Not supported - raises exception: METHOD_NOT_SUPPORTED

import Supported

import Supported

importFrom Supported

importFrom Supported

export Not supported - raises exception: METHOD_NOT_SUPPORTED

getContentLength Supported

getSourceAddress Supported

open Supported

close Supported

trim Not supported - raises exception: METHOD_NOT_SUPPORTED

read Not supported - raises exception: METHOD_NOT_SUPPORTED

write Not supported - raises exception: METHOD_NOT_SUPPORTED

Supporting Other External Sources

7-6 Oracle Multimedia User's Guide

 ctx IN OUT RAW,
 cmd IN VARCHAR2,
 arglist IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END processCommand;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END import;
 PROCEDURE import(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END import;
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END importFrom;
 PROCEDURE importFrom(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 dlob IN OUT NOCOPY BLOB,
 mimetype OUT VARCHAR2,
 format OUT VARCHAR2,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END importFrom;
 PROCEDURE export(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 slob IN OUT NOCOPY BLOB,
 loc IN VARCHAR2,
 name IN VARCHAR2)
 IS
 --Your variables go here.
 BEGIN

Supporting Other External Sources

Extending Oracle Multimedia 7-7

 --Your code goes here.
 END export;

 FUNCTION getContentLength(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END getContentLength;
 FUNCTION getSourceAddress(obj IN ORDSYS.ORDSource,
 ctx IN OUT RAW,
 userData IN VARCHAR2)
 RETURN VARCHAR2
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END getSourceAddress;
 FUNCTION open(obj IN OUT NOCOPY ORDSYS.ORDSource, userArg IN RAW, ctx OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END open;
 FUNCTION close(obj IN OUT NOCOPY ORDSYS.ORDSource, ctx IN OUT RAW)
 RETURN INTEGER
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END close;
 FUNCTION trim(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 newlen IN INTEGER)
 RETURN INTEGER
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END trim;
 PROCEDURE read(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW)
 IS
 --Your variables go here.
 BEGIN
 --Your code goes here.
 END read;
 PROCEDURE write(obj IN OUT NOCOPY ORDSYS.ORDSource,
 ctx IN OUT RAW,
 startPos IN INTEGER,
 numBytes IN OUT INTEGER,
 buffer OUT RAW)
 IS
 --Your variables go here.

Supporting Other Media Data Formats

7-8 Oracle Multimedia User's Guide

 BEGIN
 --Your code goes here.
 END write;
END ORDX_MY_SOURCE;
/
show errors;

7.2 Supporting Other Media Data Formats
To implement your new ORDAudio, ORDDoc, or ORDVideo data format, you must
implement the required interfaces in the ORDPLUGINS.ORDX_<format>_<media>
package in the ORDPLUGINS schema (where <format> represents the name of the
new audio or video, or other heterogeneous media data format and <media>
represents the type of media ("AUDIO" or "VIDEO", or "DOC"). Use the
ORDPLUGINS.ORDX_DEFAULT_<media> package as a guide when you extend
support to other audio or video data formats or other heterogeneous media data
formats. Use the package body examples in Section 7.2.1.2, Section 7.2.2.2, and
Section 7.2.3.2 as templates to create the audio or video, or other heterogeneous media
data package body, respectively. Then, set the new format parameter in the
setFormat() call to the appropriate format value to indicate to the ORDAudio,
ORDDoc, or ORDVideo object that package ORDPLUGINS.ORDX_<format>_
<media> is available as a plug-in, and that it must be used for method invocation.

The following subsections describe how to extend Oracle Multimedia to support other
data formats:

■ Supporting Other ORDAudio Data Formats

■ Supporting Other ORDDoc Data Formats

■ Supporting Other Video Data Formats

■ Supporting Other Image Data Formats

7.2.1 Supporting Other ORDAudio Data Formats
The following subsections describe how to extend ORDAudio to support other data
formats:

■ ORDPLUGINS.ORDX_DEFAULT_AUDIO Package

■ Extending Oracle Multimedia to Support a New Audio Data Format

7.2.1.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
Use the following ORDPLUGINS.ORDX_DEFAULT_AUDIO package provided as a guide
in developing your own ORDPLUGINS.ORDX_<format>_AUDIO audio format
package. This package sets the mimeType field in the setProperties() method with a
MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_AUDIO
authid current_user
AS
--AUDIO ATTRIBUTES ACCESSORS

PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
 RETURN NUMBER;
FUNCTION getAttribute(ctx IN OUT RAW,

Supporting Other Media Data Formats

Extending Oracle Multimedia 7-9

 obj IN ORDSYS.ORDAudio,
 name IN VARCHAR2) RETURN VARCHAR2;
PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 attributes IN OUT NOCOPY CLOB);
--AUDIO PROCESSING METHODS
FUNCTION processCommand(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 cmd IN VARCHAR2,
 arguments IN VARHAR2,
 result OUT RAW)
 RETURN RAW;

END;
/

Table 7–3 shows the methods supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO
package and the exceptions raised if you call a method that is not supported.

7.2.1.2 Extending Oracle Multimedia to Support a New Audio Data Format
Extending Oracle Multimedia to support a new audio data format consists of the
following steps:

1. Design your new audio data format.

a. To support a new audio data format, implement the required interfaces in the
ORDX_<format>_AUDIO package in the ORDPLUGINS schema (where
<format> represents the name of the new audio data format). See
Section 7.2.1.1 for a complete description of the interfaces for the ORDX_

Table 7–3 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_AUDIO Package

Name of Method Level of Support

setProperties Supported; if the source is local, extract attributes from the local data
and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE and set the
properties; if the source is neither local nor a BFILE, get the media
content into a temporary LOB, extract attributes from the data, and
set the properties.

checkProperties Supported; if the source is local, extract the attributes from the local
data and compare them with the attribute values of the object, but if
the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, extract the attributes from the BFILE and compare
them with the attribute values of the object; if the source is neither
local nor a BFILE, get the media content into a temporary LOB,
extract the attributes from the media content and compare them with
the attribute values of the object.

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and AUDIO_PLUGIN_EXCEPTION.

getAllAttributes Supported; if the source is local, get the attributes and return them,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDAudioExceptions.LOCAL_DATA_SOURCE_
REQUIRED exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED
and AUDIO_PLUGIN_EXCEPTION.

Supporting Other Media Data Formats

7-10 Oracle Multimedia User's Guide

DEFAULT_AUDIO package. Use the package body example in Example 7–2 as
a template to create the audio package body.

b. Then, set the new format parameter in the setFormat() call to the appropriate
format value to indicate to the audio object that package ORDPLUGINS.ORDX_
<format>_AUDIO is available as a plug-in.

2. Implement your new audio data format and name it, for example, ORDX_MY_
AUDIO.SQL.

3. Install your new ORDX_MY_AUDIO.SQL plug-in into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_AUDIO
plug-in, to PUBLIC.

5. In an application, set the format attribute to my to cause your plug-in to be
invoked.

A package body listing is provided in Example 7–2 to assist you in this operation. Add
your variables to the places that say "--Your variables go here" and add your code to
the places that say "--Your code goes here".

Example 7–2 Package Body for Extending Support to a New Audio Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_AUDIO
AS
 --AUDIO ATTRIBUTES ACCESSORS
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 setComments IN NUMBER :=0)
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 FUNCTION checkProperties(ctx IN OUT RAW, obj IN OUT ORDSYS.ORDAudio)
 RETURN NUMBER
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 name IN VARCHAR2)
 RETURN VARCHAR2
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDAudio,
 attributes IN OUT NOCOPY CLOB)
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 -- AUDIO PROCESSING METHODS
 FUNCTION processCommand(
 ctx IN OUT RAW,

Supporting Other Media Data Formats

Extending Oracle Multimedia 7-11

 obj IN OUT NOCOPY ORDSYS.ORDAudio,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
END;
/
show errors;

7.2.2 Supporting Other ORDDoc Data Formats
The following subsections describe how to extend ORDDoc to support other data
formats:

■ ORDPLUGINS.ORDX_DEFAULT_DOC Package

■ Extending Oracle Multimedia to Support a New ORDDoc Data Format

7.2.2.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package
Use the following ORDPLUGINS.ORDX_DEFAULT_DOC package provided as a guide in
developing your own ORDPLUGINS.ORDX_<format>_DOC media format package.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_DOC
authid current_user
AS

PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDDoc,
 setComments IN NUMBER := 0);

END;
/

Table 7–4 shows the method supported in the ORDPLUGINS.ORDX_DEFAULT_DOC
package and the exception raised if the source is NULL.

7.2.2.2 Extending Oracle Multimedia to Support a New ORDDoc Data Format
Extending Oracle Multimedia to support a new ORDDoc data format consists of the
following steps:

1. Design your new media data format.

Table 7–4 Method Supported in the ORDPLUGINS.ORDX_DEFAULT_DOC Package

Name of Method Level of Support

setProperties Supported; if the source is local, extract attributes from the local data
and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE and set the
properties; if the source is neither local nor a BFILE, get the media
content into a temporary LOB, extract attributes from the data, and set
the properties.

Supporting Other Media Data Formats

7-12 Oracle Multimedia User's Guide

a. To support a new media data format, implement the required interfaces in the
ORDX_<format>_DOC package in the ORDPLUGINS schema (where
<format> represents the name of the new media data format). See
Section 7.2.2.1 for a complete description of the interfaces for the ORDX_
DEFAULT_DOC package. Use the package body example in Example 7–3 as a
template to create the package body.

b. Then, set the new format parameter in the setFormat() call to the appropriate
format value to indicate to the media object that package
ORDPLUGINS.ORDX_<format>_DOC is available as a plug-in.

2. Implement your new media data format and name it, for example, ORDX_MY_
DOC.SQL.

3. Install your new ORDX_MY_DOC.SQL plug-in into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_DOC
plug-in, to PUBLIC.

5. In an application, set the format to my to cause your plug-in to be invoked.

A package body listing is provided in Example 7–3 to assist you in this operation. Add
your variables to the places that say "--Your variables go here" and add your code to
the places that say "--Your code goes here".

Example 7–3 Package Body for Extending Support to a New ORDDoc Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_DOC
AS
 --DOCUMENT ATTRIBUTES ACCESSORS
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDDoc,
 setComments IN NUMBER :=0)
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
END;
/
show errors;

7.2.3 Supporting Other Video Data Formats
The following subsections describe how to extend ORDVideo to support other data
formats:

■ ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

■ Extending Oracle Multimedia to Support a New Video Data Format

7.2.3.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
Use the following ORDPLUGINS.ORDX_DEFAULT_VIDEO package provided as a guide
in developing your own ORDPLUGINS.ORDX_<format>_VIDEO video format
package. This package sets the mimeType field in the setProperties() method with a
MIME type value that is dependent on the file format.

CREATE OR REPLACE PACKAGE ORDX_DEFAULT_VIDEO
authid current_user
AS
--VIDEO ATTRIBUTES ACCESSORS

Supporting Other Media Data Formats

Extending Oracle Multimedia 7-13

FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 name IN VARCHAR2)
 RETURN VARCHAR2;
PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 setComments IN NUMBER := 0);
FUNCTION checkProperties(ctx IN OUT RAW,obj IN ORDSYS.ORDVideo) RETURN NUMBER;

-- must return name=value; name=value; ... pairs
PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 attributes IN OUT NOCOPY CLOB);
-- VIDEO PROCESSING METHODS
FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW;

END;
/

Table 7–5 shows the methods supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO
package and the exceptions raised if you call a method that is not supported.

Table 7–5 Methods Supported in the ORDPLUGINS.ORDX_DEFAULT_VIDEO Package

Name of Method Level of Support

getAttribute Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

setProperties Supported; if the source is local, extract attributes from the local data
and set the properties, but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception; if the
source is a BFILE, then extract attributes from the BFILE and set the
properties; if the source is neither local nor a BFILE, get the media
content into a temporary LOB, extract attributes from the data, and
set the properties.

checkProperties Supported; if the source is local, extract attributes from the local data
and compare them with the attribute values of the object, but if the
source is NULL, raise an ORDSYS.ORDSourceExceptions.EMPTY_
SOURCE exception; if the source is a BFILE, then extract attributes
from the BFILE data and compare them with the attribute values of
the object; if the source is neither local nor a BFILE, get the media
content into a temporary LOB, extract attributes from the media
content and compare them with the attribute values of the object.

getAllAttributes Supported; if the source is local, get the attributes and return them,
but if the source is NULL, raise an
ORDSYS.ORDSourceExceptions.EMPTY_SOURCE exception;
otherwise, if the source is external, raise an
ORDSYS.ORDVideoExceptions.LOCAL_DATA_SOURCE_
REQUIRED exception.

processCommand Not supported - raises exceptions: METHOD_NOT_SUPPORTED and
VIDEO_PLUGIN_EXCEPTION

Supporting Other Media Data Formats

7-14 Oracle Multimedia User's Guide

7.2.3.2 Extending Oracle Multimedia to Support a New Video Data Format
Extending Oracle Multimedia to support a new video data format consists of the
following steps:

1. Design your new video data format.

a. To support a new video data format, implement the required interfaces in the
ORDX_<format>_VIDEO package in the ORDPLUGINS schema (where
<format> represents the name of the new video data format). See
Section 7.2.3.1 for a complete description of the interfaces for the ORDX_
DEFAULT_VIDEO package. Use the package body example in Example 7–4 as
a template to create the video package body.

b. Then, set the new format parameter in the setFormat() call to the appropriate
format value to indicate to the video object that package ORDPLUGINS.ORDX_
<format>_VIDEO is available as a plug-in.

2. Implement your new video data format and name it, for example, ORDX_MY_
VIDEO.SQL.

3. Install your new ORDX_MY_VIDEO.SQL plug-in into the ORDPLUGINS schema.

4. Grant EXECUTE privileges on your new plug-in, for example, ORDX_MY_VIDEO
plug-in, to PUBLIC.

5. In an application, set the video format to my to cause your plug-in to be invoked.

A package body listing is provided in Example 7–4 to assist you in this operation. Add
your variables to the places that say "--Your variables go here" and add your code to
the places that say "--Your code goes here".

Example 7–4 Package Body for Extending Support to a New Video Data Format

CREATE OR REPLACE PACKAGE BODY ORDX_MY_VIDEO
AS
 --VIDEO ATTRIBUTES ACCESSORS
 FUNCTION getAttribute(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 name IN VARCHAR2)
 RETURN VARCHAR2
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 PROCEDURE setProperties(ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 setComments IN NUMBER :=0)
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 FUNCTION checkProperties(ctx IN OUT RAW, obj IN ORDSYS.ORDVideo) RETURN NUMBER
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 PROCEDURE getAllAttributes(ctx IN OUT RAW,
 obj IN ORDSYS.ORDVideo,
 attributes IN OUT NOCOPY CLOB)

Extending Oracle Multimedia with a New Type

Extending Oracle Multimedia 7-15

 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
 -- VIDEO PROCESSING METHODS
 FUNCTION processCommand(
 ctx IN OUT RAW,
 obj IN OUT NOCOPY ORDSYS.ORDVideo,
 cmd IN VARCHAR2,
 arguments IN VARCHAR2,
 result OUT RAW)
 RETURN RAW
 IS
--Your variables go here.
 BEGIN
--Your code goes here.
 END;
END;
/
show errors;

7.2.4 Supporting Other Image Data Formats
Oracle Multimedia supports certain other image formats through the setProperties()
method for foreign images. This method enables other image formats to be recognized
by writing the values supplied to the setProperties() method for foreign images to the
existing ORDImage data attributes.

7.3 Extending Oracle Multimedia with a New Type
You can use any of the Oracle Multimedia objects types as the basis for a new type of
your own creation as shown in Example 7–5 for the ORDImage object type.

Example 7–5 Extend Oracle Multimedia ORDImage with a New Object Type

CREATE TYPE AnnotatedImage AS OBJECT
 (image ORDSYS.ORDImage,
 description VARCHAR2(2000),
 MEMBER PROCEDURE SetProperties(SELF IN OUT AnnotatedImage),
 MEMBER PROCEDURE Copy(dest IN OUT AnnotatedImage),
 MEMBER PROCEDURE ProcessCopy(command IN VARCHAR2,

See Also:

The setProperties() for foreign images method inOracle Multimedia
Reference for more information, and to determine the type of images
that are supported this way

Note: When a type is altered, any dependent type definitions are
invalidated. You will encounter this problem if you define a new
type that includes an Oracle Multimedia object type attribute and
the Oracle Multimedia object type is altered, which always occurs
during an Oracle Multimedia installation upgrade.

A workaround to this problem is to revalidate all invalid type
definitions with the following SQL statement:

SQL> ALTER TYPE <type-name> COMPILE;

Supporting Media Data Processing

7-16 Oracle Multimedia User's Guide

 dest IN OUT AnnotatedImage)
);
/

CREATE TYPE BODY AnnotatedImage AS
 MEMBER PROCEDURE SetProperties(SELF IN OUT AnnotatedImage) IS
 BEGIN
 SELF.image.setProperties();
 SELF.description :=
 'This is an example of using Image object as a subtype';
 END SetProperties;
 MEMBER PROCEDURE Copy(dest IN OUT AnnotatedImage) IS
 BEGIN
 SELF.image.copy(dest.image);
 dest.description := SELF.description;
 END Copy;
 MEMBER PROCEDURE ProcessCopy(command IN VARCHAR2,
 dest IN OUT AnnotatedImage) IS
 BEGIN
 SELF.Image.processCopy(command,dest.image);
 dest.description := SELF.description;
 END ProcessCopy;
END;
/

After creating the new type, you can use it as you would any other type. For example:

CREATE OR REPLACE DIRECTORY ORDIMGDIR AS 'C:\TESTS';

CREATE TABLE my_example(id NUMBER, an_image AnnotatedImage);
INSERT INTO my_example VALUES (1,
 AnnotatedImage(
 ORDSYS.ORDImage.init('file','ORDIMGDIR','plaid.gif'));
COMMIT;
DECLARE
 myimage AnnotatedImage;
BEGIN
 SELECT an_image INTO myimage FROM my_example;
 myimage.SetProperties;
 DBMS_OUTPUT.PUT_LINE('This image has a description of ');
 DBMS_OUTPUT.PUT_LINE(myimage.description);
 UPDATE my_example SET an_image = myimage;
END;
/

7.4 Supporting Media Data Processing
Oracle Multimedia also supports the processing of audio and video data, as described
in the following subsections:

■ Supporting Audio Data Processing

■ Supporting Video Data Processing

7.4.1 Supporting Audio Data Processing
To support audio data processing, that is, the passing of an audio processing
command and set of arguments to a format plug-in for processing, use the
processAudioCommand() method. This method is available only for user-defined
formats.

Supporting Media Data Processing

Extending Oracle Multimedia 7-17

7.4.2 Supporting Video Data Processing
To support video data processing, that is, the passing of a command and set of
arguments to a format plug-in for processing, use the processVideoCommand()
method. This method is only available for user-defined formats.

See Also:

The processAudioCommand() method in Oracle Multimedia Reference
for a description

See Also:

The processVideoCommand() method in Oracle Multimedia Reference
for a description

Supporting Media Data Processing

7-18 Oracle Multimedia User's Guide

8

Oracle Multimedia Tuning Tips for DBAs 8-1

8 Oracle Multimedia Tuning Tips for DBAs

This chapter provides information and advice for Oracle DBAs who want to achieve
more efficient storage and management of multimedia data in the database when
using Oracle Multimedia.

The goals of your Oracle Multimedia application determine the resource requirements
and how to allocate those resources. Because application development and design
decisions have the greatest effect on performance, standard tuning methods must be
applied to the system planning, design, and development phases of the project to
achieve optimal results for your Oracle Multimedia application in a production
environment.

Multimedia data consists of a variety of media types including images, audio clips,
video clips, line drawings, and so on. All these media types are typically stored in
LOBs. LOBs can be either internal BLOBs (stored in an internal database tablespace) or
BFILEs (external LOBs in operating system files outside of the database tablespaces).
This chapter discusses the management of audio, image, and video data stored in
BLOBs only.

This chapter includes these sections:

■ Understanding the Performance Profile of Oracle Multimedia Operations on
page 8-1

■ Choosing LOB Storage Parameters for Oracle Multimedia Objects on page 8-3

■ Setting Database Initialization Parameters on page 8-6

8.1 Understanding the Performance Profile of Oracle Multimedia
Operations

Multimedia data, and the operations that can be performed on that data, differs
significantly from traditional types of data commonly stored in relational databases. A
basic understanding of the performance profile of Oracle Multimedia operations can
help you make better decisions when tuning your database for media performance.

The following tables summarize the general performance profiles for a set of
commonly performed operations. There are two primary components to each profile.
The I/O pattern is a general characterization of the primary type of I/O access and of
how much of the media data the operation reads or writes. Because some operations
involve two media objects, the I/O pattern is described for both the source and

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more
information about using LOBs in Oracle Database

Understanding the Performance Profile of Oracle Multimedia Operations

8-2 Oracle Multimedia User's Guide

destination media objects. The second component is a general characterization of the
level of CPU usage for the operation.

Table 8–1 shows the profile for loading and retrieving data, which applies to all Oracle
Multimedia media types.

Table 8–2 shows the profile for commonly used methods of the ORDImage type.

Table 8–3 shows the profile for commonly used methods of the ORDDicom type.

Table 8–4 shows the profile for commonly used methods of the ORDAudio and
ORDVideo types.

Note: The information in these tables describes general
characterizations and I/O patterns, thus CPU usage may vary
considerably for some media formats.

Table 8–1 Performance Profile For All Multimedia Types

Operation
I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O Pattern
(Amount) CPU Usage

Load new media
data into a database

N/A Sequential write All Low

Retrieve media
from a database

Sequential read N/A All Low

Table 8–2 Performance Profile For ORDImage Methods

Object Method
I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O Pattern
(Amount) CPU Usage

setProperties() Sequential read N/A Media
header

Low to medium

getMetadata() Sequential read N/A Media
header

Low to medium

putMetadata() Sequential read Sequential write All Low to medium

process() Sequential read Sequential write All High

processCopy() Sequential read Sequential write All High

Table 8–3 Performance Profile For ORDDicom Methods

Object Method
I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O Pattern
(Amount) CPU Usage

setProperties() Sequential read N/A Media
header

Low to medium

extractMetadata() Sequential read N/A Media
header

Low to medium

writeMetadata() Sequential read Sequential write All Low to medium

makeAnonymous() Sequential read Sequential write All Low to medium

process() Sequential read Sequential write All High

processCopy() Sequential read Sequential write All High

Choosing LOB Storage Parameters for Oracle Multimedia Objects

Oracle Multimedia Tuning Tips for DBAs 8-3

8.2 Choosing LOB Storage Parameters for Oracle Multimedia Objects
The choices you make for specifying LOB storage attributes during table creation can
significantly affect the performance of media load, retrieval, and processing
operations. This section describes the most important options to consider and shows
how the performance profile of Oracle Multimedia operations can affect the choice of
LOB storage parameters.

The following subsections describe the LOB storage parameters and include examples
of how to use them:

■ SecureFile LOBs and BasicFile LOBs

■ TABLESPACE

■ CACHE, NOCACHE, and CACHE READS

■ LOGGING and NOLOGGING

■ CHUNK

■ Example of Setting LOB Storage Options

8.2.1 SecureFile LOBs and BasicFile LOBs
SecureFile LOBs (SecureFiles) were introduced in Oracle Database 11g Release 1 (11.1)
to supplement the original BasicFile LOBs implementation that is identified by the
SQL parameter BASICFILE. The performance of SecureFile LOBs is significantly better
than that of BasicFile LOBs, especially for large media data. Oracle recommends using
SecureFile LOBs for storing media data whenever possible. SecureFile LOBs are
identified by specifying the SQL parameter SECUREFILE.

8.2.2 TABLESPACE
You can achieve the best performance for LOBs by specifying storage for LOBs in a
different tablespace than the one used for the table that contains the LOB. If many
different LOBs are to be accessed frequently, you can also specify a separate tablespace
for each LOB column or attribute to reduce device contention.

8.2.3 CACHE, NOCACHE, and CACHE READS
The cache option is a part of the STORE AS clause, and determines whether LOB
pages are stored in the buffer cache.

Table 8–4 Performance Profile For ORDAudio and ORDVideo Methods

Object Method
I/O Pattern
(Source)

I/O Pattern
(Destination)

I/O Pattern
(Amount) CPU Usage

setProperties() Sequential read N/A Media
header

Low

getProperties() Sequential read N/A Media
header

Low

See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for
detailed information about LOBs

Choosing LOB Storage Parameters for Oracle Multimedia Objects

8-4 Oracle Multimedia User's Guide

■ When the option has the value CACHE, Oracle places LOB pages in the buffer cache
where they can be shared among multiple users. Over time and if the LOB pages
are no longer accessed, the pages are eventually removed from the buffer cache.

■ For the value NOCACHE, LOB pages are not placed in the buffer cache.

■ For the value CACHE READS, LOB pages are placed in the cache for read
operations only.

If your application performs multiple read operations on a media object (for example:
invoking the setProperties() method and then generating a thumbnail image), enable
read caching for the source media object.

8.2.4 LOGGING and NOLOGGING
The logging option is a part of the STORE AS clause and determines if REDO data is
logged when a LOB is updated. If the [NO]LOGGING clause is omitted, neither
NOLOGGING nor LOGGING is specified and the logging attribute of the table or
table partition defaults to the logging attribute of the tablespace in which it resides.

There is another alternative depending on how the cache option is specified.

■ If CACHE is specified and [NO]LOGGING is omitted, LOGGING is automatically
implemented (because you cannot have CACHE NOLOGGING).

■ If CACHE is not specified and [NO]LOGGING is omitted, the [NO]LOGGING
value is obtained from the tablespace in which the LOB segment resides.

Specify NOLOGGING only when you do not care about media recovery. However, if
the disk, tape, or storage media fails, you will not be able to recover your changes from
the log because those changes were not logged.

NOLOGGING can be useful for bulk loading of media data. For instance, when
loading data into the LOB, if you do not care about the redo operation and you can
start the load over if it fails, set the LOB data segment storage characteristics to
NOCACHE NOLOGGING. This option provides good performance for the initial
loading of data.

After you finish loading data, if necessary, you can use the ALTER TABLE statement to
modify the LOB storage characteristics for the LOB data segment for normal LOB
operations (for example: to CACHE or NOCACHE LOGGING).

8.2.5 CHUNK
The CHUNK option applies only to BasicFile LOBs. It is part of the STORE AS clause,
and indicates the size of the minimum unit of storage for the LOB data. CHUNK must
be an integer multiple of the block size, and it must have a maximum value of 32K
bytes.

Accessing LOBs in bigger chunks is more efficient. For the most efficient storage of
media objects, which are almost always much larger than 32K, choose the maximum
value of 32K.

Note: Oracle Data Guard Redo Apply technology uses logging to
populate the standby database. Thus, do not specify NOLOGGING
with this Data Guard technology.

Choosing LOB Storage Parameters for Oracle Multimedia Objects

Oracle Multimedia Tuning Tips for DBAs 8-5

8.2.6 Example of Setting LOB Storage Options
This section describes a simple example that shows how to use the performance
profiles of Oracle Multimedia operations (see Table 8–1 through Table 8–4) to guide
your usage of LOB storage options.

In this example, Company X wants to build an archive for digital images. The archive
stores a full resolution copy of the original image, and two Web-ready, JPEG format
versions of the original at reduced scales, one at 50% of the original size and another at
25% of the original size. The database team plans to use the SQL*Loader utility to bulk
load all the initial images. Then, they can use a PL/SQL program to initialize the
image data. Initialization consists of setting the properties for the original image and
generating the scaled images. After initialization, the table is prepared for the primary
application, which retrieves images for Web-based users.

The following example shows a table definition for storing the images. The table stores
the binary image data using SecureFiles in tablespace tbs2. All the other table data is
stored in tablespace tbs1.

create table images(id integer primary key,
 original ordsys.ordimage,
 scale50 ordsys.ordimage,
 scale25 ordsys.ordimage)
tablespace tbs1
lob(original.source.localdata)store as secureFile (tablespace tbs2)
lob(scale50.source.localdata)store as secureFile (tablespace tbs2)
lob(scale25.source.localdata)store as secureFile (tablespace tbs2);

After the table is created, the image data can be loaded. Loading image data generates
a sequential write pattern to the LOB. Because no applications are reading the data
during the load operation, caching it is not required. You can also improve load
performance by disabling logging for the column that is loaded. The following
command dynamically alters the table to prepare the original image column LOB for
loading.

alter table images modify lob(original.source.localdata) (nocache nologging);

After loading, the next step is to set the image properties for the original column
and generate the scaled versions to be stored in the scale50 and scale25 columns.
In this step, the source image are fully read twice to generate the scaled versions. The
scaled images that are generated are written but not read. The following command
dynamically alters the table to enable read caching for the source image, and disables
caching and logging for the destination images.

alter table images modify lob(original.source.localdata) (cache reads);
alter table images modify lob(scale50.source.localdata) (nocache nologging);
alter table images modify lob(scale25.source.localdata) (nocache nologging);

After running the program to set the properties of the original image and generate
the scaled versions, the LOB storage attributes can be optimized for the main
application that retrieves images for users to view in a Web browser. Because the
archive contains millions of images, users are not expected to view the same image
simultaneously. Thus, there is little benefit to caching the image data. The following
command reenables logging for the LOBs and disables caching.

alter table images modify lob(original.source.localdata) (nocache logging);
alter table images modify lob(scale50.source.localdata) (nocache logging);
alter table images modify lob(scale25.source.localdata) (nocache logging);

Setting Database Initialization Parameters

8-6 Oracle Multimedia User's Guide

8.3 Setting Database Initialization Parameters
Section 8.2 points out that you can disable logging of LOB data at the column level to
reduce the amount of I/O to the redo log. However, if logging cannot be disabled,
additional database tuning may be required. Specifically, you may have to increase the
size of the redo log buffer to prevent load processes from waiting.

The initialization parameter LOG_BUFFER specifies the amount of memory (in bytes)
that Oracle uses when buffering redo entries to a redo log file. Redo log entries contain
a record of the changes that have been made to the database block buffers. The LGWR
process writes redo log entries from the log buffer to a redo log file.

If the LGWR process writes the redo log data to the redo log buffer faster than it can
write the data to disk, the buffer becomes full and user sessions are forced to wait until
space is available. The wait event "log buffer space" indicates the number of
times a session had to wait for space in the redo log buffer. You can monitor this event
in the V$SYSTEM_EVENT dynamic view to learn how many times a session had to
wait for log buffer space. If sessions are forced to wait often for log buffer space,
consider increasing the value of the LOG_BUFFER initialization parameter.

See Also:

Oracle Database Performance Tuning Guide and Oracle Database Reference
for comprehensive information on setting database initialization
parameters

9

Oracle Multimedia Examples 9-1

9Oracle Multimedia Examples

This chapter provides examples that show common operations with Oracle
Multimedia.

These scripts, and other examples, can be found on the Oracle Multimedia Sample
Code section of the Oracle Technology Network (OTN) Web site at

http://www.oracle.com/technology/products/multimedia/

Select Sample Code under Oracle Multimedia Resources to go to the Oracle
Multimedia Sample Code Web page. On that page, select Use Multimedia and
PL/SQL to manage rich media content under Multimedia Code Samples.

This chapter includes these sections:

■ Audio Data Examples on page 9-1

■ Media Data Examples on page 9-10

■ Image Data Examples on page 9-15

■ Video Data Examples on page 9-22

9.1 Audio Data Examples
Audio data examples using Oracle Multimedia include common operations on audio
data, such as using audio types with object views and using a set of scripts for
populating an ORDAudio object with BLOB data stored in the database. The following
subsections describe these operations:

■ Using Audio Types with Object Views

■ Scripts for Populating an ORDAudio Object with BLOB Data

Note: To run these examples on your system, use the files on the
Oracle Multimedia Sample Code Web page. Do not attempt to compile
and run the code in this chapter.

See Also:

Oracle Multimedia Reference for reference information about the
methods used in these examples

Audio Data Examples

9-2 Oracle Multimedia User's Guide

9.1.1 Using Audio Types with Object Views
This section describes how to use audio types with object views. Just as a view is a
virtual table, an object view is a virtual object table.

Oracle provides object views as an extension of the basic relational view mechanism.
By using object views, you can create virtual object tables -- of either built-in or
user-defined types -- from data stored in the columns of relational or object tables in
the database.

Object views can offer specialized or restricted access to the data and objects in a
database. For example, you might use an object view to provide a version of an
employee object table that does not have attributes containing sensitive data or a
deletion method. Object views also let you try object-oriented programming without
permanently converting your tables. Using object views, you can convert data
gradually and transparently from relational tables to object-relational tables.

In Example 9–1, consider the following relational table (containing no ORDAudio
objects).

Example 9–1 Define a Relational Table Containing No ORDAudio Object

create table flat (
 id NUMBER,
 description VARCHAR2(4000),
 localData BLOB,
 srcType VARCHAR2(4000),
 srcLocation VARCHAR2(4000),
 srcName VARCHAR2(4000),
 upDateTime DATE,
 local NUMBER,
 format VARCHAR2(31),
 mimeType VARCHAR2(4000),
 comments CLOB,
 encoding VARCHAR2(256),
 numberOfChannels NUMBER,
 samplingRate NUMBER,
 sampleSize NUMBER,
 compressionType VARCHAR2(4000),
 audioDuration NUMBER,
)
--
-- Store audio data as SecureFile LOBs.
--
LOB(localData) STORE AS SECUREFILE;

You can create an object view on the relational table shown in Example 9–1, as shown
in Example 9–2.

Example 9–2 Define an Object View Containing an ORDAudio Object and Relational
Columns

create or replace view object_audio_v as
 select
 id,
 ORDSYS.ORDAudio(T.description,
 ORDSYS.ORDSource(
 T.localData, T.srctype, T.srcLocation, T.srcName, T.updateTime,
 T.local),
 T.format,
 T.mimeType,

Audio Data Examples

Oracle Multimedia Examples 9-3

 T.comments,
 T.encoding,
 T.numberOfChannels,
 T.samplingRate,
 T.sampleSize,
 T.compressionType,
 T.audioDuration)
 from flat T;

Object views provide the flexibility of looking at the same relational or object data in
more than one way. Therefore, you can use different in-memory object representations
for different applications without changing the way you store the data in the database.

9.1.2 Scripts for Populating an ORDAudio Object with BLOB Data
The scripts presented in this section demonstrate how to populate an Oracle
Multimedia ORDAudio object from an existing BLOB stored in the database.

Table 9–1 lists each script by name, along with a brief description of the operations it
performs. Each script is included and described in further detail in the following
sections.

See Also:

See Oracle Database Concepts for more information about defining,
using, and updating object views.

Table 9–1 Audio Scripts

Script Name Operations Performed

create_mediadir.sql

(See Example 9–3)

Creates an audio data load directory.

(See Section 9.1.2.1)

create_soundtable.sql

(See Example 9–4)

Creates and populates the soundtable table.

(See Section 9.1.2.2)

create_audtable.sql

(See Example 9–5)

Creates the audio_table table.

(See Section 9.1.2.3)

import_aud.sql

(See Example 9–6)

Loads the audio data. This script imports the audio
data from an audio file into the audio_table table
using the ORDAudio import() method.

(See Section 9.1.2.4)

copy_audblob.sql

(See Example 9–7)

Copies the BLOB data from the soundtable table
to the audio_table table.

(See Section 9.1.2.5)

showprop_aud.sql

(See Example 9–8)

Displays the properties of the loaded audio data
stored in the audio_table table.

(See Section 9.1.2.6)

setup_audsample.sql

(See Example 9–9)

Automates the process by running the previous
audio scripts in the required order.

(See Section 9.1.2.7)

cleanup_audsample.sql

(See Example 9–10)

Cleans up by removing the sample tables,
directories, and procedures from your database.

(See Section 9.1.2.8)

Audio Data Examples

9-4 Oracle Multimedia User's Guide

9.1.2.1 Create an Audio Data Load Directory
The create_mediadir.sql script creates the audio data load directory. This script
is shown in Example 9–3. (See Section 9.2.1.1 and Section 9.3.1.1, respectively, for
information about how to use this script to create the load directories for media data
and image data.)

To load the audio data successfully, you must create a database directory object that
points to a file directory on your system. Example 9–3 uses the media_dir directory,
which points to the file directory C:\media_dir. You can edit the create_
mediadir.sql script to replace the directory path in the CREATE OR REPLACE
DIRECTORY statement with your directory specification.

This directory specified in the create_mediadir.sql script must contain your
sample audio files. The audio examples use the sample file aud1.wav, which is
installed in the <ORACLE_HOME>/ord/aud/demo directory. You can copy any
supported audio files to the C:\media_dir directory to run the scripts in these
examples.

Before running the create_mediadir.sql script, ensure that you have these
privileges:

■ CREATE ANY DIRECTORY (to specify the directory specification for your audio
files)

■ DROP ANY DIRECTORY (to delete previous instances of the audio data load
directory)

Example 9–3 create_mediadir.sql Script

-- create_mediadir.sql
--
SET SERVEROUTPUT ON;
SET ECHO ON;

-- To delete the directory, uncomment the next statement;
-- otherwise, leave it commented out.
-- DROP DIRECTORY media_dir;

-- To specify a different directory path, replace the default directory
-- path with the new path in the next statement.
CREATE OR REPLACE DIRECTORY media_dir AS 'C:\media_dir';

-- To change the user, uncomment the next statement and replace the
-- string "<USER>" with the new user. Otherwise, leave the statement
-- commented out.
-- GRANT READ ON DIRECTORY media_dir TO <USER>;

9.1.2.2 Create and Populate the soundtable Table
The create_soundtable.sql script creates and populates the soundtable table.
This table contains a BLOB column; it is created to demonstrate how to populate a

Note: If you run the create_mediadir.sql script as a different
user than the user who ran the other audio scripts, you must perform
these steps:

1. Uncomment the GRANT READ ON DIRECTORY statement.

2. Replace the string <USER> in this statement with the new user (for
example: SCOTT).

Audio Data Examples

Oracle Multimedia Examples 9-5

table with an Oracle Multimedia ORDAudio column from a table with a BLOB
column. This script is shown in Example 9–4.

This script creates the soundtable table, inserts a row with an empty BLOB, loads
the BLOB with audio data, and then checks the length of the BLOB data. You can
replace the name of the data file in the create_soundtable.sql script with the
name of the data file you plan to use.

Before running this script, ensure that you have the CREATE TABLE privilege.

Example 9–4 create_soundtable.sql Script

-- create_soundtable.sql
--
-- Create the soundtable table. This table is used ONLY to show
-- how to copy data from a BLOB column to an ORDAudio column.
--
-- Insert a row into the table with an empty BLOB.
-- Load the row with BLOB data by pointing to the audio file to
-- be loaded from the directory specified using the BFILE data
-- type.
-- Close the files and commit the transaction.
-- Check the length of the BLOB loaded. Is the length
-- what you are expecting?
--
SET SERVEROUTPUT ON;

CREATE TABLE soundtable (id number,
 sound BLOB default EMPTY_BLOB())
--
-- Store audio data as SecureFile LOBs.
--
LOB(sound) STORE AS SECUREFILE;

--
INSERT INTO soundtable(id, sound) VALUES (1, EMPTY_BLOB());
COMMIT;

DECLARE
 f_lob BFILE := BFILENAME('MEDIA_DIR','aud1.wav');
 b_lob BLOB;
 length INTEGER;
BEGIN

 SELECT sound INTO b_lob FROM soundtable WHERE id=1 FOR UPDATE;

 -- Open the LOBs.
 dbms_lob.open(f_lob, dbms_lob.file_readonly);
 dbms_lob.open(b_lob, dbms_lob.lob_readwrite);

 -- Populate the BLOB from the 'aud1.wav' file in the BFILE.
 dbms_lob.loadfromfile (b_lob, f_lob, dbms_lob.getlength(f_lob));

 -- Close the LOBs.
 dbms_lob.close(b_lob);
 dbms_lob.close(f_lob);
 COMMIT;

 -- Check the length of the LOB.
 SELECT dbms_lob.getlength(t.sound) INTO length FROM soundtable t WHERE id = 1;
 DBMS_OUTPUT.PUT_LINE('The length is '|| length);

Audio Data Examples

9-6 Oracle Multimedia User's Guide

END;
/

9.1.2.3 Create the audio_table Table
The create_audtable.sql script creates the audio_table table with the two
columns id and audio. The audio column is defined as type ORDAudio. This script
is shown in Example 9–5.

Before running this script, ensure that you have the CREATE TABLE privilege.

Example 9–5 create_audtable.sql Script

-- create_audtable.sql
--
CREATE TABLE audio_table (id NUMBER,
 audio ORDAudio)
LOB(audio.source.localData) STORE AS SECUREFILE;

9.1.2.4 Load the Audio Data
The import_aud.sql script inserts a row into the audio_table table, and imports
audio data from an audio file into the audio column in the audio_table table using
the ORDAudio import() method. This script is shown in Example 9–6.

To run this script successfully, you must copy one audio clip to your media_dir
directory using the name specified in this script, or modify this script to match the file
names of your audio clips.

This script loads the same audio clip that was loaded by the create_
soundtable.sql script. It is used later in the showprop_aud.sql script to show
that data loaded with the import() method matches the data copied from the BLOB
column of the soundtable table.

Example 9–6 import_aud.sql Script

--import_aud.sql
--
DECLARE
 obj ORDAUDIO;
 ctx RAW(64) := NULL;

BEGIN

 -- Insert a row with an ORDAudio object.
 INSERT INTO audio_table VALUES
 (1, ORDAudio('FILE', 'MEDIA_DIR', 'aud1.wav'))
 returning audio into obj;

 --Import the audio clip aud1.wav from media_dir.
 obj.import(ctx);

 --Set the properties.
 obj.setProperties(ctx);

 --Update the table with the audio object.
 UPDATE audio_table SET audio = obj WHERE id = 1;

Note: Run this script as the user who ran the previous audio scripts.

Audio Data Examples

Oracle Multimedia Examples 9-7

 COMMIT;

END;
/

9.1.2.5 Copy the BLOB Data to the ORDAudio Object
The copy_audblob.sql script inserts a row with id=2 into the audio_table table
and copies the audio data in the sound column of the soundtable table into the
audio column of the audio_table table for a row with id=2. The script uses the
ORDAudio constructor that takes a BLOB as the input parameter. It also sets the
properties of the audio data after inserting it. This script is shown in Example 9–7.

Example 9–7 copy_audblob.sql Script

--copy_audblob.sql
--
-- Use the ORDAudio constructor that takes a BLOB as the input parameter
-- in the SQL INSERT statement.
--
-- In this case, the BLOB (an audio clip), which was stored in
-- a row with ID = 1 in the soundtable table, is copied to a row
-- with ID = 2 in the audio_table table containing an audio column
-- defined as an ORDAudio object type.
--
INSERT INTO audio_table
 (select 2, ORDAudio(S.sound) FROM soundtable S WHERE S.id = 1);

DECLARE
 obj ORDSYS.ORDAudio;
 ctx RAW(40) := NULL;
BEGIN
SELECT audio INTO obj FROM audio_table WHERE id = 2 for update;
obj.setProperties(ctx);
UPDATE audio_table SET audio = obj WHERE ID = 2;
END;
/

COMMIT;

9.1.2.6 Show the Properties of the Loaded Audio Data
The showprop_aud.sql script displays the properties of the audio data clips stored
in the audio_table table. They should be identical. Different load methods were
used to load the same audio clip into two rows in the audio_table table. This script
verifies that the audio data that was loaded using the ORDAudio import() method
matches the audio data that was copied from a BLOB column of the soundtable
table. This script is shown in Example 9–8.

Example 9–8 showprop_aud.sql Script

-- showprop_aud.sql
--
SET SERVEROUTPUT ON;

Note: Run this script as the user who ran the previous audio scripts.

Note: Run this script as the user who ran the previous audio scripts.

Audio Data Examples

9-8 Oracle Multimedia User's Guide

--
--Query audio_table for ORDAudio content in PL/SQL.
--

BEGIN
 -- Check the properties of the audio data clip imported into the
 -- ORDAudio object type. Properties for ID=1 should be identical
 -- with ID=2.

 dbms_output.put_line(' Properties of these audio clips are identical:');

 FOR rec in (SELECT id, audio FROM audio_table ORDER BY id) LOOP
 dbms_output.put_line('Properties for id: ' || rec.id);

 dbms_output.put_line('audio encoding: ' || rec.audio.getEncoding);
 dbms_output.put_line('audio number of channels: '||
 rec.audio.getNumberOfChannels);
 dbms_output.put_line('audio MIME type: ' || rec.audio.getMimeType);
 dbms_output.put_line('audio file format: ' || rec.audio.getFormat);
 dbms_output.put_line
 ('--');
 END LOOP;
END;
/
--
-- Query audio_table for ORDAudio and list the properties using SQL.
--
clear columns
column id format 99;
column encoding format a15;
column mimetype format a20;
column fileformat format a15;
column channels format 99;
SELECT t.id,
 t.audio.getEncoding() encoding,
 t.audio.getNumberOfChannels() channels,
 t.audio.getMimetype() mimetype,
 t.audio.getFormat() fileformat
from audio_table t ORDER BY t.id;

The results from running the script showprop_aud.sql show that the properties are
identical for each stored audio clip.

Properties of these audio clips are identical:
Properties for id: 1
audio encoding: MS_PCM
audio number of channels: 1
audio MIME type: audio/x-wav
audio file format: WAVE
--
Properties for id: 2
audio encoding: MS_PCM
audio number of channels: 1
audio MIME type: audio/x-wav
audio file format: WAVE
--

PL/SQL procedure successfully completed.

Audio Data Examples

Oracle Multimedia Examples 9-9

ID ENCODING CHANNELS MIMETYPE FILEFORMAT
--- --------------- -------- -------------------- ---------------
 1 MS_PCM 1 audio/x-wav WAVE
 2 MS_PCM 1 audio/x-wav WAVE

9.1.2.7 Automate the ORDAudio Examples
The setup_audsample.sql script runs each of the previous audio scripts in the
correct order to automate this process. This script is shown in Example 9–9.

Before running this script, ensure that you have these privileges:

■ CREATE ANY DIRECTORY

■ CREATE TABLE

Example 9–9 setup_audsample.sql Script

-- setup_audsample.sql
--

-- Create the media_dir load directory:
@create_mediadir.sql

-- Create the soundtable table and populate it with
-- an audio clip:
@create_soundtable.sql

-- Create the audio_table table:
@create_audtable.sql

--Import an audio clip:
@import_aud.sql

-- Copy a BLOB into an ORDAudio object, set the properties,
-- and update the time:
@copy_audblob.sql

-- Check the properties of the audio clips. The properties
-- should be identical:
@showprop_aud.sql

--exit;

9.1.2.8 Clean Up the ORDAudio Examples
The cleanup_audsample.sql script removes the sample tables, directories, and
procedures created by the previous audio scripts from your database. This script is
shown in Example 9–10.

Before running this script, ensure that you have the DROP ANY DIRECTORY
privilege.

Example 9–10 cleanup_audsample.sql Script

-- cleanup_audsample.sql
--
-- Drop the audio load directory.
-- DROP DIRECTORY media_dir;

Note: Run this script as the user who ran the previous audio scripts.

Media Data Examples

9-10 Oracle Multimedia User's Guide

-- Drop the tables created by the demo.
DROP TABLE soundtable PURGE;
DROP TABLE audio_table PURGE;

exit;

9.2 Media Data Examples
Media data examples using Oracle Multimedia include common operations on
heterogeneous data, such as using a set of scripts for populating an ORDDoc object
from a file data source. The following subsection describes this operation:

■ Scripts for Populating an ORDDoc Object from a File Data Source

9.2.1 Scripts for Populating an ORDDoc Object from a File Data Source
The scripts presented in this section demonstrate how to populate an ORDDoc object
from an existing file.

Table 9–2 lists each script by name, along with a brief description of the operations it
performs. Each script is included and described in further detail in the following
sections.

See Also:

Oracle Multimedia Reference for reference information about the
methods used in these examples

Table 9–2 Media Scripts

Script Name Operations Performed

create_mediadir.sql

(See Example 9–3)

Creates a media data load directory.

(See Section 9.2.1.1)

create_doctable.sql

(See Example 9–11)

Creates the doc_table table.

(See Section 9.2.1.2)

import_doc.sql

(See Example 9–12)

Loads the media data. This script imports the media
data from a file into the doc_table table using the
ORDDoc import() method.

(See Section 9.2.1.3)

read_doc.sql

(See Example 9–13)

Reads the media data from a BLOB using a stored
procedure.

(See Section 9.2.1.4)

showprop_doc.sql

(See Example 9–14)

Displays the properties of the loaded media data
stored in the doc_table table.

(See Section 9.2.1.5)

setup_docsample.sql

(See Example 9–15)

Automates the process by running the previous
media scripts in the required order.

(See Section 9.2.1.6)

cleanup_docsample.sql

(See Example 9–16)

Cleans up by removing the sample tables,
directories, and procedures from your database.

(See Section 9.2.1.7)

Media Data Examples

Oracle Multimedia Examples 9-11

9.2.1.1 Create a Media Data Load Directory
The create_mediadir.sql script creates the media data load directory. This script
is shown in Example 9–3.

To load the media data successfully, you must create a database directory object that
points to a file directory on your system. Example 9–3 uses the media_dir directory,
which points to the file directory C:\media_dir. You can edit the create_
mediadir.sql script to replace the directory path in the CREATE OR REPLACE
DIRECTORY statement with your directory specification.

This directory specified in the create_mediadir.sql script must contain your
sample media files. The media examples use the sample files aud1.wav and
aud2.mp3, which are installed in the <ORACLE_HOME>/ord/aud/demo directory.
You can copy any supported media files to the C:\media_dir directory to run the
scripts in these examples.

Before running the create_mediadir.sql script, ensure that you have these
privileges:

■ CREATE ANY DIRECTORY (to specify the directory specification for your media
files)

■ DROP ANY DIRECTORY (to delete previous instances of the media data load
directory)

9.2.1.2 Create the doc_table Table
The create_doctable.sql script creates the doc_table table with the two
columns id and document. The document column is defined as type ORDDoc. This
script is shown in Example 9–11.

Before running this script, ensure that you have the CREATE TABLE privilege.

Example 9–11 create_doctable.sql Script

-- create_doctable.sql
--
CREATE TABLE doc_table (id NUMBER,
 document ORDDoc)
LOB(document.source.localData) STORE AS SECUREFILE;

9.2.1.3 Load the Media Data
The import_doc.sql script inserts two rows into the doc_table table, and imports
media data from a media file into the document column in the doc_table table
using the ORDDoc import() method. This script is shown in Example 9–12.

To run this script successfully, you must copy two media files to your media_dir
directory using the names specified in this script, or modify this script to match the file
names of your media files.

Note: If you run the create_mediadir.sql script as a different
user than the user who ran the other media scripts, you must perform
these steps:

1. Uncomment the GRANT READ ON DIRECTORY statement.

2. Replace the string <USER> in this statement with the new user (for
example: SCOTT).

Media Data Examples

9-12 Oracle Multimedia User's Guide

Example 9–12 import_doc.sql Script

-- import_doc.sql
--
CREATE OR REPLACE PROCEDURE load_document (in_id INTEGER,
 in_dir VARCHAR2,
 in_fname VARCHAR2)
AS
 obj ORDDOC;
 ctx RAW(64) := NULL;
BEGIN
 INSERT INTO doc_table VALUES
 (in_id, ORDDoc('FILE', in_dir, in_fname))
 RETURNING document INTO obj;
 obj.import(ctx,TRUE);
 UPDATE doc_table SET document = obj WHERE id = in_id;
 COMMIT;
END;
/
show errors;

-- Import the audio files aud1.wav and aud2.mp3 from the MEDIA_DIR directory
-- on a local file system.
EXECUTE load_document(1, 'MEDIA_DIR', 'aud1.wav');
EXECUTE load_document(2, 'MEDIA_DIR', 'aud2.mp3');

9.2.1.4 Read the Media Data from the BLOB
The read_doc.sql script reads media data from a BLOB by creating the stored
procedure read_document. This procedure reads a specified amount of media data
from the BLOB attribute, beginning at a particular offset, until all the media data is
read. This script is shown in Example 9–13.

Example 9–13 read_doc.sql Script

--read_doc.sql
--
SET SERVEROUTPUT ON

create or replace procedure read_document(in_id integer) as
obj ORDDoc;
buffer RAW (32767);
numBytes integer;
bytesRead integer := 0;
startpos integer := 1;
ctx RAW(64) := NULL;
BEGIN
 select document into obj from doc_table where id = in_id;
 DBMS_OUTPUT.PUT_LINE('Content length is: ' || obj.getContentLength());

 LOOP
 numBytes := 32767;
 startpos := startpos + bytesRead;
 obj.readFromSource(ctx,startPos,numBytes,buffer);

Note: Run this script as the user who ran the previous media scripts.

Note: Run this script as the user who ran the previous media scripts.

Media Data Examples

Oracle Multimedia Examples 9-13

 bytesRead := numBytes;

 DBMS_OUTPUT.PUT_LINE('start position: '|| startPos);
 DBMS_OUTPUT.PUT_LINE('read ' || bytesRead || ' bytes.');

 -- Note: Add your own code here to process the media data being read.
 -- This routine reads the data into the buffer 32767 bytes at a time,
 -- then reads the next chunk, overwriting the first buffer full of data.
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('End of data ');
 WHEN ORDSYS.ORDSourceExceptions.METHOD_NOT_SUPPORTED THEN
 DBMS_OUTPUT.PUT_LINE('ORDSourceExceptions.METHOD_NOT_SUPPORTED caught');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('EXCEPTION caught:' || SQLERRM);
END;
/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute read_document(1);

Content length is: 93594
start position: 1
read 32767 bytes.
start position: 32768
read 32767 bytes.
start position: 65535
read 28060 bytes.
End of data

PL/SQL procedure successfully completed.

9.2.1.5 Show the Properties of the Loaded Media Data
The showprop_doc.sql script displays the properties of the media data loaded into
the doc_table table. This script is shown in Example 9–14.

Example 9–14 showprop_doc.sql Script

-- showprop_doc.sql
--
SET SERVEROUTPUT ON;

--
-- Query doc_table for ORDDoc and print the properties using PL/SQL.
--

BEGIN
 FOR rec in (SELECT id, document FROM doc_table ORDER BY id) LOOP
 dbms_output.put_line('document id: '|| rec.id);
 dbms_output.put_line('document MIME type: '|| rec.document.getMimeType());
 dbms_output.put_line('document file format: '|| rec.document.getFormat());
 dbms_output.put_line('BLOB Length: '|| rec.document.getContentLength());
 dbms_output.put_line('--');

Note: Run this script as the user who ran the previous media scripts.

Media Data Examples

9-14 Oracle Multimedia User's Guide

 END loop;
END;
/

--
-- Query doc_table for ORDDoc and list the properties using SQL.
--
clear columns
column id format 99;
column mimetype format a20;
column format format a10;
column length format 99999999;
SELECT t.id,
 t.document.getMimeType() mimetype,
 t.document.getFormat() format,
 t.document.getContentLength() length
from doc_table t ORDER BY t.id;

The results from running the script showprop_doc.sql are the following:

SQL> @showprop_doc.sql

document id: 1
document MIME type: audio/x-wav
document file format: WAVE
BLOB Length: 93594
--
document id: 2
document MIME type: audio/mpeg
document file format: MPGA
BLOB Length: 51537
--

PL/SQL procedure successfully completed.

 ID MIMETYPE FORMAT LENGTH
--- -------------------- ---------- ---------
 1 audio/x-wav WAVE 93594
 2 audio/mpeg MPGA 51537

9.2.1.6 Automate the ORDDoc Examples
The setup_docsample.sql script runs each of the previous media scripts in the
correct order to automate this process. This script is shown in Example 9–15.

Before running this script, ensure that you have these privileges:

■ CREATE ANY DIRECTORY

■ CREATE TABLE

Example 9–15 setup_docsample.sql Script

-- setup_docsample.sql
--

-- Create the media_dir load directory:
@create_mediadir.sql

-- Create the doc_table table:
@create_doctable.sql

Image Data Examples

Oracle Multimedia Examples 9-15

--Import 2 media clips and set the properties:
@import_doc.sql

--Display the properties of the media clips:
@showprop_doc.sql

--Create a stored procedure to read from ordDoc:
@read_doc.sql

--Execute the stored procedure:
execute read_document(1);

--exit;

9.2.1.7 Clean Up the ORDDoc Examples
The cleanup_docsample.sql script removes the sample tables, directories, and
procedures created by the previous media scripts from your database. This script is
shown in Example 9–16.

Before running this script, ensure that you have the DROP ANY DIRECTORY
privilege.

Example 9–16 cleanup_docsample.sql Script

-- cleanup_docsample.sql
--
-- Drop the doc load directory.
-- DROP DIRECTORY media_dir;

-- Drop the table and procedures created by the demo.
DROP TABLE doc_table PURGE;
DROP PROCEDURE read_document;
DROP PROCEDURE load_document;

exit;

9.3 Image Data Examples
Image data examples using Oracle Multimedia include common operations on image
data, such as using a set of scripts for populating an ORDImage object from a file data
source, using a set of scripts for loading an image table from an HTTP data source, and
addressing issues related to globalization support. The following subsections describe
these operations:

■ Scripts for Populating an ORDImage Object from a File Data Source

■ Loading an Image Table from an HTTP Data Source

■ Addressing Globalization Support Issues

Note: Run this script as the user who ran the previous media scripts.

See Also:

Oracle Multimedia Reference for reference information about the
methods used in these examples

Image Data Examples

9-16 Oracle Multimedia User's Guide

9.3.1 Scripts for Populating an ORDImage Object from a File Data Source
The scripts presented in this section demonstrate how to populate an Oracle
Multimedia ORDImage object from an existing file.

Table 9–3 lists each script by name, along with a brief description of the operations it
performs. Each script is included and described in further detail in the following
sections.

9.3.1.1 Create an Image Data Load Directory
The create_mediadir.sql script creates the image data load directory. This script
is shown in Example 9–3.

To load the image data successfully, you must create a database directory object that
points to a file directory on your system. Example 9–3 uses the media_dir directory,
which points to the file directory C:\media_dir. You can edit the create_
mediadir.sql script to replace the directory path in the CREATE OR REPLACE
DIRECTORY statement with your directory specification.

This directory specified in the create_mediadir.sql script must contain your
sample image files. The image examples use the sample files img71.gif and
img50.gif, which are installed in the <ORACLE_HOME>/ord/img/demo directory.
You can copy any supported image files to the C:\media_dir directory to run the
scripts in these examples.

Before running the create_mediadir.sql script, ensure that you have these
privileges:

■ CREATE ANY DIRECTORY (to specify the directory specification for your image
files)

Table 9–3 Image Scripts

Script Name Operations Performed

create_mediadir.sql

(See Example 9–3)

Creates an image data load directory.

(See Section 9.3.1.1)

create_imgtable.sql

(See Example 9–17)

Creates the image_table table.

(See Section 9.3.1.2)

import_img.sql

(See Example 9–18)

Loads the image data. This script imports the image
data from a file into the image_table table using
the ORDImage import() method.

(See Section 9.3.1.3)

read_image.sql

(See Example 9–19)

Reads the image data from a BLOB using a stored
procedure.

(See Section 9.3.1.4)

showprop_img.sql

(See Example 9–20)

Displays the properties of the loaded image data
stored in the image_table table.

(See Section 9.3.1.5)

setup_imgsample.sql

(See Example 9–21)

Automates the process by running the previous
image scripts in the required order.

(See Section 9.3.1.6)

cleanup_imgsample.sql

(See Example 9–22)

Cleans up by removing the sample tables,
directories, and procedures from your database.

(See Section 9.3.1.7)

Image Data Examples

Oracle Multimedia Examples 9-17

■ DROP ANY DIRECTORY (to delete previous instances of the image data load
directory)

9.3.1.2 Create the image_table Table
The create_imgtable.sql script creates the image_table table with the two
columns id and image. The image column is defined as type ORDImage. This script
is shown in Example 9–17.

Before running this script, ensure that you have the CREATE TABLE privilege.

Example 9–17 create_imgtable.sql Script

-- create_imgtable.sql
--
CREATE TABLE image_table (id NUMBER,
 image ORDImage)
LOB(image.source.localData) STORE AS SECUREFILE;

9.3.1.3 Load the Image Data
The import_img.sql script inserts two rows into the image_table table, and
imports image data from an image file into the image column in the image_table
table using the ORDImage import() method. This script is shown in Example 9–18.

To run this script successfully , you must copy two image files to your media_dir
directory using the file names specified in this script, or modify this script to match the
file names of your image files.

Example 9–18 import_img.sql Script

-- import_img.sql
--
CREATE OR REPLACE PROCEDURE load_image(in_id INTEGER,
 in_dir VARCHAR2,
 in_fname VARCHAR2)
AS
 obj ORDIMAGE;
 ctx RAW(64) := NULL;
BEGIN
 INSERT INTO image_table VALUES
 (in_id, ORDImage('FILE', in_dir, in_fname))
 RETURNING image INTO obj;
 obj.import(ctx);
 UPDATE image_table SET image = obj WHERE id = in_id;
 COMMIT;
END;
/

Note: If you run the create_mediadir.sql script as a different
user than the user who ran the other image scripts, you must perform
these steps:

1. Uncomment the GRANT READ ON DIRECTORY statement.

2. Replace the string <USER> in this statement with the new user (for
example: SCOTT).

Note: Run this script as the user who ran the previous image scripts.

Image Data Examples

9-18 Oracle Multimedia User's Guide

show errors

-- Import the two files into the database.
EXECUTE load_image(1, 'MEDIA_DIR', 'img71.gif');
EXECUTE load_image(2, 'MEDIA_DIR', 'img50.gif');

9.3.1.4 Read the Image Data from the BLOB
The read_image.sql script reads image data from a BLOB by creating the stored
procedure read_image. This procedure reads a specified amount of image data from
the BLOB attribute, beginning at a particular offset, until all the image data is read.
This script is shown in Example 9–19.

Example 9–19 read_image.sql Script

-- read_image.sql
--
set serveroutput on
create or replace procedure read_image (in_id integer) as
-- Note: ORDImage has no readFromSource method like ORDAudio
-- and ORDVideo; therefore, you must use the DBMS_LOB package to
-- read image data from a BLOB.
buffer RAW (32767);
src BLOB;
amt integer;
pos integer := 1;
bytesRead integer := 0;
length integer;
BEGIN
 Select t.image.getcontent(), t.image.getContentLength()
 into src, length from image_table t where t.id = in_id;
 DBMS_OUTPUT.PUT_LINE('Content length is: '|| length);

 LOOP
 amt := 32767;
 pos := pos + bytesRead;
 DBMS_LOB.READ(src,amt,pos,buffer);
 bytesRead := amt;

 DBMS_OUTPUT.PUT_LINE('start position: '|| pos);
 DBMS_OUTPUT.PUT_LINE('bytes read '|| bytesRead);
-- Note: Add your own code here to process the image data being read.
-- This routine reads data into the buffer 32767 bytes at a time,
-- then reads the next chunk, overwriting the first buffer full of data.
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('----------------');
 DBMS_OUTPUT.PUT_LINE('End of data ');
END;
/
show errors

To execute the stored procedure, enter the following SQL statements:

SQL> set serveroutput on;
SQL> execute read_image(1);

Note: Run this script as the user who ran the previous image scripts.

Image Data Examples

Oracle Multimedia Examples 9-19

Content length is: 1124
start position: 1
bytes read 1124

End of data

PL/SQL procedure successfully completed.

9.3.1.5 Show the Properties of the Loaded Image Data
The showprop_img.sql script displays the properties of the image data loaded into
the image_table table. This script is shown in Example 9–20.

Example 9–20 showprop_img.sql Script

-- showprop_img.sql
--
SET SERVEROUTPUT ON;

--
-- Display the properties of the images stored in image_table using PL/SQL.
--

BEGIN

 FOR rec in (SELECT id, image from image_table ORDER BY id) LOOP
 dbms_output.put_line('Image properties:');
 dbms_output.put_line('image id: '|| rec.id);
 dbms_output.put_line('image height: '|| rec.image.getHeight());
 dbms_output.put_line('image width: '|| rec.image.getWidth());
 dbms_output.put_line('image MIME type: '|| rec.image.getMimeType());
 dbms_output.put_line('image file format: '|| rec.image.getFileFormat());
 dbms_output.put_line('BLOB Length: '|| rec.image.getContentLength());
 dbms_output.put_line('---');
 END loop;
END;
/

--
-- Display the properties of the images stored in image_table using SQL.
--
clear columns
column id format 99;
column height format 999999;
column width format 999999;
column mimetype format a15;
column fileformat format a10;
column length format 999999999;
select t.id,
 t.image.getHeight() height,
 t.image.getWidth() width,
 t.image.getMimetype() mimetype,
 t.image.getFileFormat() fileformat,
 t.image.getContentLength() length
from image_table t ORDER BY t.id;

The results from running the script showprop_img.sql are the following:

Note: Run this script as the user who ran the previous image scripts.

Image Data Examples

9-20 Oracle Multimedia User's Guide

SQL> @showprop_img.sql
Image properties:
image id: 1
image height: 15
image width: 43
image MIME type: image/gif
image file format: GIFF
BLOB Length: 1124

Image properties:
image id: 2
image height: 32
image width: 110
image MIME type: image/gif
image file format: GIFF
BLOB Length: 686

PL/SQL procedure successfully completed.

 ID HEIGHT WIDTH MIMETYPE FILEFORMAT LENGTH
--- ------- ------- --------------- ---------- ----------
 1 15 43 image/gif GIFF 1124
 2 32 110 image/gif GIFF 686

9.3.1.6 Automate the ORDImage Examples
The setup_imgsample.sql script runs each of the previous image scripts in the
correct order to automate this process. This script is shown in Example 9–21.

Before running this script, ensure that you have these privileges:

■ CREATE ANY DIRECTORY

■ CREATE TABLE

Example 9–21 setup_imgsample.sql Script

-- setup_imgsample.sql
--

--Create the media_dir load directory:
@create_mediadir.sql

--Create the image_table table:
@create_imgtable.sql

--Import images into the image_table table:
@import_img.sql

--Show the properties of the images:
@showprop_img.sql

--Create a stored procedure to read from ordImage:
@read_image.sql

--Execute the stored procedure:
execute read_image(1);

--exit;

Image Data Examples

Oracle Multimedia Examples 9-21

9.3.1.7 Clean Up the ORDImage Examples
The cleanup_imgsample.sql script removes the sample tables, directories, and
procedures created by the previous image scripts from your database. This script is
shown in Example 9–22.

Before running this script, ensure that you have the DROP ANY DIRECTORY
privilege.

Example 9–22 cleanup_imgsample.sql Script

-- cleanup_imgsample.sql
--
-- Drop the image load directory.
DROP DIRECTORY media_dir;

-- Drop the tables created by the demo.
DROP TABLE image_table PURGE;

-- Drop the procedures.
DROP PROCEDURE read_image;
DROP PROCEDURE load_image;

exit;

9.3.2 Loading an Image Table from an HTTP Data Source
The import_imghttp.sql script imports the image data from an HTTP data source.
This script inserts two rows into the image_table table and loads the image data
from the specified HTTP data source (source type HTTP, URL location, and HTTP
object name). This script is shown in Example 9–23.

To run this script successfully, you must modify it to point to two images located on
your Web site, as described in Example 9–23.

Example 9–23 Import Image Data from an HTTP Data Source

-- import_imghttp.sql
--
-- Import the two HTTP images from a Web site into the database.
-- Prerequisites
-- Follow these steps before running this script:
-- 1. Run create_imgdir.sql.
-- 2. Run create_imgtable.sql.
-- 3. Modify the HTTP URL and object name to point to two images on
-- your Web site.

-- Insert two rows with an empty BLOB.

insert into image_table values (7,ORDImage(
'http','http://your_website/images','image1.jpg'));

insert into image_table values (8,ORDImage(
'http','http://your_website/images','image2.gif'));

commit;

DECLARE

Note: Run this script as the user who ran the previous image scripts.

Video Data Examples

9-22 Oracle Multimedia User's Guide

 obj ORDSYS.ORDIMAGE;
 ctx RAW(64) := NULL;
BEGIN
-- This imports the image file image1.gif from the HTTP source URL
-- (srcType=HTTP), and automatically sets the properties.

 select Image into obj from image_table where id = 7 for update;
 obj.import(ctx);

 update image_table set image = obj where id = 7;
 commit;

-- This imports the image file image2.gif from the HTTP source URL
-- (srcType=HTTP), and automatically sets the properties.

 select Image into obj from image_table where id = 8 for update;
 obj.import(ctx);

 update image_table set image = obj where id = 8;
 commit;
END;
/

9.3.3 Addressing Globalization Support Issues
The globalization.sql script demonstrates how to address issues related to
globalization support. It shows how to use the process() method with language
settings that use the comma as the decimal point. For example, when the territory is
FRANCE, the decimal point is expected to be a comma. Thus,",75" is specified as the
scale factor. This script is shown in Example 9–24.

Example 9–24 Address a Globalization Support Issue

-- globalization.sql
--
ALTER SESSION SET NLS_LANGUAGE = FRENCH;
ALTER SESSION SET NLS_TERRITORY = FRANCE;
DECLARE
myimage ORDImage;
BEGIN

SELECT image into myimage from image_table where id=1 for update;
myimage.process('scale=",75"');
UPDATE image_table SET image = myimage where id=1;
COMMIT;
END;
/

Run the showprop_img.sql script (Example 9–20) to see the properties of the scaled
image.

See Oracle Multimedia Reference for more information about ensuring the correct
globalization support interpretation when using the process() method.

9.4 Video Data Examples
Video data examples using Oracle Multimedia are not available in this chapter.

Video Data Examples

Oracle Multimedia Examples 9-23

See Also:

Oracle Multimedia Reference for reference information and video data
examples

Video Data Examples

9-24 Oracle Multimedia User's Guide

A

Oracle Multimedia Sample Applications A-1

AOracle Multimedia Sample Applications

Oracle Multimedia provides several scripts and sample applications, written in C,
SQL, PL/SQL, and Java. Most of them are available after you install the Oracle
Database Examples media, which you can download from the Oracle Technology
Network (OTN), in the locations shown in Table A–1.

You can download additional sample applications from the Oracle Multimedia OTN
Web site (in the Software and Sample Code sections) at

http://www.oracle.com/technology/products/multimedia/

This appendix includes these sections:

■ Oracle Multimedia ORDImage OCI C Sample Application on page A-1

■ Oracle Multimedia PL/SQL Sample Applications on page A-2

■ Oracle Multimedia Java Sample Applications on page A-2

■ Other Oracle Multimedia Sample Applications on page A-3

A.1 Oracle Multimedia ORDImage OCI C Sample Application
After installing the Oracle Database Examples media, you can run the Oracle
Multimedia ORDImage OCI C sample application to modify images. This sample

Table A–1 Oracle Multimedia Sample Applications in Oracle Database Examples Media

Name Location

ORDImage OCI C Linux and UNIX: <ORACLE_HOME>/ord/img/demo

Windows: <ORACLE_HOME>\ord\img\demo

PL/SQL Web Toolkit
Photo Album

Linux and UNIX: <ORACLE_HOME>/ord/http/demo/plsqlwtk

Windows: <ORACLE_HOME>\ord\http\demo\plsqlwtk

Code Wizard for the
PL/SQL Gateway

Linux and UNIX: <ORACLE_HOME>/ord/http/demo/plsgwycw

Windows: <ORACLE_HOME>\ord\http\demo\plsgwycw

Oracle Multimedia Java
API

Linux and UNIX: <ORACLE_HOME>/ord/im/demo/java

Windows: <ORACLE_HOME>\ord\im\demo\java

Oracle Multimedia Java
Servlet Photo Album

Linux and UNIX: <ORACLE_HOME>/ord/http/demo/servlet

Windows: <ORACLE_HOME>\ord\http\demo\servlet

Oracle Multimedia JSP
Photo Album

Linux and UNIX: <ORACLE_HOME>/ord/http/demo/jsp

Windows: <ORACLE_HOME>\ord\http\demo\jsp

Oracle Multimedia PL/SQL Sample Applications

A-2 Oracle Multimedia User's Guide

application is written in C, and uses Oracle Call Interface (OCI) to access the database
and process images using Oracle Multimedia.

A.2 Oracle Multimedia PL/SQL Sample Applications
These PL/SQL sample applications are available after installing the Oracle Database
Examples media:

Oracle Multimedia PL/SQL Web Toolkit Photo Album Sample Application
The Oracle Multimedia PL/SQL Web Toolkit Photo Album sample application shows
how to upload and retrieve media data using the PL/SQL Web Toolkit and PL/SQL
Gateway. See Section 3.1 for more information about installing and using this
application.

Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway
The Oracle Multimedia Code Wizard sample application for the PL/SQL Gateway lets
you create PL/SQL procedures for the PL/SQL Gateway to upload and retrieve media
data stored in the database using any of the Oracle Multimedia object types. See
Chapter 4 for more information about installing and using this application.

A.3 Oracle Multimedia Java Sample Applications
These Java sample applications are available after installing the Oracle Database
Examples media:

Oracle Multimedia Java API Sample Application
The Oracle Multimedia Java API sample application shows how to use the audio,
video, image, and media (ORDDoc) client-side Java classes to build your own Java
applications. This Java sample application uses the sample schemas to demonstrate the
use of the OrdAudio, OrdVideo, OrdImage, and OrdDoc Java objects. See Chapter 5
for more information about installing and using this application.

Oracle Multimedia Java Servlet Photo Album Sample Application
The Oracle Multimedia Java Servlet Photo Album sample application shows how to
use Oracle Multimedia Servlets and JSP Java API to upload and retrieve multimedia
data. See Section 3.2 for more information about installing and using this application.

See Also:

The README.txt file in the demo directory for more information
about this sample application

See Also:

The README.txt file in the demo directory for requirements and
instructions for running this application

See Also:

The README.txt file in the demo directory for requirements and
instructions for running this application

See Also:

The README.txt file in the demo directory for requirements and
instructions for running this application

Other Oracle Multimedia Sample Applications

Oracle Multimedia Sample Applications A-3

Oracle Multimedia JavaServer Pages (JSP) Photo Album Sample Application
The Oracle Multimedia JSP Photo Album sample application shows how to use Oracle
Multimedia Servlets and JSP Java API to upload and retrieve multimedia data. See
Section 3.3 for more information about installing and using this application.

A.4 Other Oracle Multimedia Sample Applications
Additional Oracle Multimedia sample applications are available for download from
the Oracle Multimedia OTN Web site (in the Software and Sample Code sections) at

http://www.oracle.com/technology/products/multimedia/

One of these OTN applications is the Oracle Multimedia JSP Tag Library Photo Album
sample application. This Java sample application shows how to use tags from the
Oracle Multimedia JSP Tag Library to retrieve media data from the database and
deliver it to a browser, and how to upload media files into a database.

See Also:

The README.txt file in the demo directory for requirements and
instructions for running this application

See Also:

The README.txt file in the demo directory for requirements and
instructions for running this application

See Also:

■ Oracle Multimedia JSP Tag Library Guide for more information
about installing and using this application

■ The README.txt file for requirements and instructions for
running this application

Other Oracle Multimedia Sample Applications

A-4 Oracle Multimedia User's Guide

B

Managing Oracle Multimedia Installations B-1

B Managing Oracle Multimedia Installations

This appendix describes the management of Oracle Multimedia.

This appendix includes these sections:

■ Oracle Multimedia Installed Users and Privileges on page B-1

■ Installing and Configuring Oracle Multimedia on page B-2

■ Verifying an Installed Version of Oracle Multimedia on page B-4

■ Upgrading an Installed Version of Oracle Multimedia on page B-5

■ Downgrading an Installed Version of Oracle Multimedia on page B-5

■ Removing Oracle Multimedia on page B-5

B.1 Oracle Multimedia Installed Users and Privileges
The Oracle Multimedia installation procedure performs these functions:

■ Creates the database users shown in Table B–1 with the privileges required by
Oracle Multimedia.

■ Creates the default passwords shown in Table B–2 for the Oracle Multimedia and
MDSYS user accounts, and then locks the accounts and marks their default
passwords as expired.

Note: See the Oracle Multimedia README.txt file located in
<ORACLE_HOME>/ord/im/admin for the latest information.

Table B–1 Installed Database Users

Name of User Type of User

ORDSYS Oracle Multimedia

ORDPLUGINS Oracle Multimedia

SI_INFORMTN_SCHEMA Oracle Multimedia

ORDDATA Oracle Multimedia

MDSYS Oracle Spatial/Oracle Multimedia Location Services

Installing and Configuring Oracle Multimedia

B-2 Oracle Multimedia User's Guide

■ Grants the EXECUTE privilege to the user group PUBLIC for the Oracle
Multimedia packages and objects installed in these schemas:

– ORDSYS

– ORDPLUGINS

– SI_INFORMTN_SCHEMA

– MDSYS

B.2 Installing and Configuring Oracle Multimedia
Oracle Multimedia is automatically installed and configured with Oracle Database.

The following subsections describe the steps to perform before manual installation and
configuration of Oracle Multimedia, and the steps for manually installing and
configuring it:

■ Preinstallation Steps

■ Installation and Configuration Steps

Table B–2 User Accounts and Default Passwords

User Account Installation Password

ORDSYS ORDSYS

ORDPLUGINS ORDPLUGINS

SI_INFORMTN_SCHEMA SI_INFORMTN_SCHEMA

ORDDATA ORDDATA

MDSYS MDSYS

Caution: Oracle does not recommend logging in directly to the user
accounts shown in Table B–2.

Installing and Configuring Oracle Multimedia

Managing Oracle Multimedia Installations B-3

B.2.1 Preinstallation Steps
Before installing and configuring Oracle Multimedia manually, perform these steps:

1. Install Oracle Database, including PL/SQL, Oracle JVM, Oracle XML Database,
and Oracle XDK.

2. Create the database.

3. Start the database.

4. Verify that the required software is correctly installed and valid, as follows:

a. Run SQL*Plus, connect as SYSDBA, and enter these queries:

SQL> select version, status from dba_registry where comp_id='JAVAVM';
SQL> select version, status from dba_registry where comp_id='XDB';
SQL> select version, status from dba_registry where comp_id='XML';

b. Examine the results of the queries to ensure that each version value is
identical to the version of Oracle Multimedia that you are installing and each
status value is VALID.

B.2.2 Installation and Configuration Steps
These steps are not required if you use the Database Configuration Assistant.

To install and configure Oracle Multimedia manually, perform these steps (<ORACLE_
HOME> represents the Oracle home directory):

Caution: Performing any of these prohibited actions could cause
internal errors and security violations in the database management
system.

These users are created during database installation, and might
change in future releases:

■ Users in which Oracle-supplied Oracle Multimedia is installed:
ORDSYS, ORDPLUGINS, SI_INFORMTN_SCHEMA, and ORDDATA

■ User in which Oracle Multimedia Locator is installed if Oracle
Spatial is not installed: MDSYS

Do not delete any of these users.

Do not connect to or modify any of these users or their contents
(which are supplied by Oracle Multimedia and reserved by Oracle),
with these exceptions:

■ You can add user-defined packages to the user ORDPLUGINS (see
Chapter 7).

■ DICOM administrators store user-defined DICOM data model
configuration documents in the user ORDDATA, using the
DICOM data model repository API. See Oracle Multimedia DICOM
Developer's Guide for more information about inserting documents
into the data model repository.

See Also:

Oracle Database Installation Guide for your operating system for more
detailed information

Verifying an Installed Version of Oracle Multimedia

B-4 Oracle Multimedia User's Guide

1. Use Oracle Universal Installer to install the files that comprise Oracle Multimedia
on your system.

2. Decide which tablespace to use for the Oracle Multimedia users, and which
tablespace to use for the Oracle Spatial/Oracle Multimedia Location Services user
(see Table B–1). Oracle recommends using the SYSAUX tablespace for all of these
users.

3. Create the users and grant the appropriate privileges, as follows:

a. Start SQL*Plus and connect as SYSDBA:

% sqlplus

SQL> CONNECT sys as sysdba

b. Call the script ordinst.sql, with two parameters for the Oracle Multimedia
tablespace and the Oracle Spatial/Oracle Multimedia Location Services
tablespace:

On Linux and UNIX:

SQL> @<ORACLE_HOME>/ord/admin/ordinst.sql SYSAUX SYSAUX

On Windows:

SQL> @<ORACLE_HOME>\ord\admin\ordinst.sql SYSAUX SYSAUX

4. Install the Oracle Multimedia types and packages, as follows:

Call the script catim.sql, while you are connected as SYSDBA:

On Linux and UNIX:

SQL> @<ORACLE_HOME>/ord/im/admin/catim.sql

On Windows:

SQL> @<ORACLE_HOME>\ord\im\admin\catim.sql

Now Oracle Multimedia is ready for use.

B.3 Verifying an Installed Version of Oracle Multimedia
After installing or upgrading Oracle Multimedia, you can verify the Oracle
Multimedia installation by calling the Oracle Multimedia validation procedure.

To run the Oracle Multimedia validation procedure, perform these steps:

1. Start SQL*Plus and connect as SYSDBA:

% sqlplus

SQL> CONNECT sys as sysdba

2. Execute the procedure sys.validate_ordim:

SQL> execute sys.validate_ordim;

If the validation procedure detects invalid objects, it lists the first few invalid
objects and sets the registry entry to INVALID; otherwise, it silently sets the Oracle
Multimedia registry entry to VALID.

3. Verify that the registry entry for Oracle Multimedia is correct, as follows:

Removing Oracle Multimedia

Managing Oracle Multimedia Installations B-5

a. Enter this query from SQL*Plus, while you are connected as SYSDBA:

SQL> select version, status from dba_registry where comp_id='ORDIM';

b. Examine the result of the query to ensure that the version value is correct
and the status value is VALID.

B.4 Upgrading an Installed Version of Oracle Multimedia
If you upgrade a database from an earlier release of Oracle Database, Oracle
Multimedia is upgraded automatically if it is detected in the source database.

B.5 Downgrading an Installed Version of Oracle Multimedia
Oracle Multimedia is automatically downgraded when you downgrade a database
with the Oracle Multimedia feature installed.

B.6 Removing Oracle Multimedia
To remove Oracle Multimedia manually, perform these steps:

1. Start SQL*Plus, and connect as SYSDBA:

% sqlplus

SQL> CONNECT sys as sysdba

2. Call the script catcmprm.sql, with the parameter ORDIM:

On Linux and UNIX:

SQL> @<ORACLE_HOME>/rdbms/admin/catcmprm.sql ORDIM

On Windows:

SQL> @<ORACLE_HOME>\rdbms\admin\catcmprm.sql ORDIM

If one or more components that depend on Oracle Multimedia (such as Oracle
Spatial) are installed, this message appears:

ORDIM cannot be removed as it has the following dependencies:
 Component: SDO Namespace: SERVER

See Also:

Oracle Database Upgrade Guide for detailed upgrading instructions

Caution: Do not modify your DICOM data model repository until
you are sure that you are not going to downgrade from Oracle
Database 11g Release 2 (11.2) back to the source release.

Changes to the Oracle Multimedia DICOM data model repository
(such as document insertions or deletions) that you make after a
database upgrade are lost after a database downgrade.

See Also:

Oracle Database Upgrade Guide for detailed downgrading instructions

Removing Oracle Multimedia

B-6 Oracle Multimedia User's Guide

If no dependent components are installed, a message appears, indicating either
that Oracle Multimedia is or is not in use.

Then, a prompt asks if you really want to remove Oracle Multimedia.

3. Reply to the prompt with Y or y to remove Oracle Multimedia.

Oracle Multimedia is removed with force (regardless of whether it is in use).

Glossary-1

Glossary

audio data

Media data produced by an audio recorder, an audio source, or by program
algorithms. Audio recording devices take analog or continuous signals and convert
them into digital values with specific audio characteristics.

codecs

Digital compression and decompression schemes.

content metadata

Data that describes the content of image media, such as the name of the photographer,
and the date and time when a photograph was taken.

DICOM content

Standalone DICOM Information Objects that are encoded according to the data
structure and encoding definitions of PS 3.10-2007 of the DICOM standard (commonly
referred to as DICOM Part 10 files). For more information about DICOM Information
Objects, see the DICOM standard, which is available worldwide from the NEMA Web
site at

http://medical.nema.org/

DICOM data

See DICOM content.

embedded metadata

Metadata that is stored with image data in the image file format.

heterogeneous media data

Assorted media data, such as audio data, image data, video data, and other types of
media data. The data can have a variety of formats, depending upon the application
that generated it.

image data

Media data produced by a document or photograph scanner, a video source, other
specialized image capture devices, or by program algorithms. Image capture devices
take analog or continuous signals and convert them into digital values on a
two-dimensional grid of data points known as pixels. Devices involved in the capture
and display of images are under application control.

image interchange format

Glossary-2

image interchange format

A well-defined organization and use of image attributes, data, and often compression
schemes that enables different applications to create, exchange, and use images.
Interchange formats are often stored as disk files.

image metadata format

Standard protocols and techniques used to store image metadata within an image file.
Formats include: EXIF, IPTC-IIM, and XMP.

Java servlets

 Java classes that dynamically process HTTP requests and construct HTTP responses.

JavaServer Pages (JSP)

See JSP.

JSP

JavaServer Pages, Java text-based documents that execute as Java servlets, but which
permit a more natural approach to creating static content than using servlets.

lossless compression schemes

Compression schemes that squeeze an image so that when it is decompressed, the
resulting image is bit-for-bit identical with the original.

lossy compression schemes

Compression schemes that do not result in an identical image when decompressed,
but rather, one in which the changes may be imperceptible to the human eye. Lossy
schemes generally provide higher compression than lossless compression schemes.

media data

Data from audio, image, DICOM format medical images and other objects, video, or
other heterogeneous media.

metadata

Information about media data, such as object length, compression type, or format.

methods

Procedures that can be performed on objects, such as getContent() or setProperties().

Oracle interMedia

In Oracle Database 11g Release 1 (11.1), the name Oracle interMedia was changed to
Oracle Multimedia.

ORDAudio

Object relational type for audio data characteristics.

ORDDicom

Object relational type for characteristics of DICOM content produced by medical
devices. See Oracle Multimedia DICOM Developer's Guide for more information about
this object type.

ORDDoc

Object relational type for heterogeneous data characteristics.

video data

Glossary-3

ORDImage

Object relational type for image data characteristics.

ORDSource

Object relational type that stores data source information for audio, heterogeneous,
image, and video data characteristics.

ORDVideo

Object relational type for video data characteristics.

portlets

Summarized versions of applications and Web content situated in defined regions of a
Web page that are accessible through enterprise portals.

protocols

Image interchange formats exchanged in a sequential fashion over a network.

technical metadata

Data that describes image media in a technical sense, such as the height and width of
an image, in pixels, or the type of compression used to store the image.

video data

Media data produced by a video recorder, a video camera, digitized animation video,
other specialized video recording devices, or by program algorithms. Some video
recording devices take analog or continuous signals and convert them into digital
values with specific video characteristics.

video data

Glossary-4

Index-1

Index

A
application development, 2-2

Java class libraries, 2-2
Oracle development tools, 2-4
PL/SQL Gateway feature, 2-4

audio data examples, 9-1

C
C sample applications

ORDImage OCI C, A-1
Code Wizard for the PL/SQL Gateway sample

application, A-2
Code Wizard sample application, 4-2
codecs (compression and decompression

schemes), 1-6
compression, 1-5
compression formats

audio, 1-5
image, 1-5
video, 1-11

compression schemes, 1-6, 1-9
content metadata, 6-1

D
data

loading multimedia, 1-12
data formats, 1-8
database users

default passwords, B-1
DBA tuning tips, 8-1
decompression schemes, 1-6
DICOM

extracting metadata, 1-9
digital camera images, 6-2
downgrading an installed version of Oracle

Multimedia, B-5

E
embedded metadata, 6-1
embedding metadata, 1-9
exception handling

Java, 2-22
PL/SQL, 2-9

EXIF standard, 6-2
extending Oracle Multimedia

audio default format, 7-8
document default format, 7-11
new audio format, 7-9, 7-12
new data source, 7-5
new document format, 7-11
new image object type, 7-15
new video format, 7-14
video default format, 7-12

G
globalization support

image data examples, 9-22

I
image data examples, 9-15

globalization support issues, 9-22
image file storage standards

EXIF, 6-2
IPTC-IIM, 6-2
XMP, 6-3

image metadata format
defined, 6-2

image watermarking, 1-11
installing Oracle Multimedia, B-2
interchange format, 1-9
interchanging metadata, 6-3
IPTC-IIM standard, 6-2

J
Java

client applications, 2-15
configuring your environment, 2-16
exception handling, 2-21
retrieving media, 2-18
uploading media, 2-19
Web applications, 2-23

Java class libraries, 2-2
Java database connectivity (JDBC), 2-15
Java sample applications

JSP Tag Library Photo Album application, A-3
Oracle Multimedia Java API, A-2

Index-2

Oracle Multimedia Java Servlet Photo
Album, A-2

Oracle Multimedia JSP Photo Album, A-3
Oracle Multimedia JSP Tag Library Photo

Album, A-3
JSP Tag Library Photo Album sample

application, A-3

L
loading data

multimedia, 1-12
using PL/SQL, 1-12
using SQL*Loader, 1-12

loading media data
Java example, 2-19, 2-20

lossless compression, 1-9
lossy compression, 1-9

M
media data examples, 9-10
media delivery components

Java servlet example, 2-25
JavaServer Pages example, 2-25

media queries
PL/SQL, 2-7

medical imaging, 1-10
metadata, 6-1

embedding, 6-2
extracting metadata, 1-9

embedding in XML, 3-2
embedding metadata, 6-5
extracting, 1-9, 3-2, 6-2
extracting metadata, 6-4
information about, 6-7
searching, 3-2
storing, 3-2
XML DB, 6-3, 6-6
XML documents, 6-3

metadata examples
creating a table, 6-4
embedding metadata, 6-5
extracting metadata, 6-4

N
news media images, 6-2

O
object relational technology, 1-3
Oracle development tools, 2-4
Oracle interMedia See Oracle Multimedia
Oracle Multimedia, 1-1

media data storage model, 1-5
objects types, 1-4

Oracle Multimedia DICOM Java API
Java client applications, 2-15

Oracle Multimedia Java API
Java client applications, 2-15

Oracle Multimedia Java API sample application, 5-1,
A-2

Oracle Multimedia Java Servlet Photo Album sample
application, 3-23, A-2

Oracle Multimedia JSP Photo Album sample
application, 3-32, A-3

Oracle Multimedia JSP Tag Library Photo Album
sample application, A-3

Oracle Multimedia Mid-Tier Java API
Java client applications, 2-15

Oracle Multimedia sample applications
located on Oracle Technology Network, A-3

Oracle Multimedia Servlets and JSP Java API
Java-based Web applications, 2-23

Oracle Technology Network
downloading Oracle Multimedia sample

applications, A-3
ORDImage OCI C sample application, A-1
ORDPLUGINS.ORDX_DEFAULT_AUDIO

package, 7-8
ORDPLUGINS.ORDX_DEFAULT_DOC

package, 7-11
ORDPLUGINS.ORDX_DEFAULT_VIDEO

package, 7-12
ORDPLUGINS.ORDX_FILE_SOURCE package, 7-2
ORDPLUGINS.ORDX_HTTP_SOURCE package, 7-4

P
packages

ORDPLUGINS.ORDX_DEFAULT_AUDIO, 7-8
ORDPLUGINS.ORDX_DEFAULT_DOC, 7-11
ORDPLUGINS.ORDX_DEFAULT_VIDEO, 7-12
ORDPLUGINS.ORDX_FILE_SOURCE, 7-2
ORDPLUGINS.ORDX_HTTP_SOURCE, 7-4

packages or PL/SQL plug-ins, 7-2
passwords

installation defaults, B-1
PL/SQL

client applications, 2-6
configuring your environment, 2-7
exception handling, 2-9
generating HTML output, 2-11
loading data, 1-12
media queries, 2-7
retrieving media, 2-8, 2-11
uploading media, 2-8, 2-11
Web applications, 2-11

PL/SQL Gateway feature, 2-4
PL/SQL packages, 2-11
PL/SQL sample applications

Code Wizard for the PL/SQL Gateway, A-2
PL/SQL Web Toolkit Photo Album, A-2

PL/SQL Web Toolkit Photo Album sample
application, 3-2, A-2

protocol, 1-9

R
related documents, xii

Index-3

retrieving media
Oracle Multimedia Servlets and JSP Java

API, 2-24
PL/SQL, 2-8, 2-11

S
sample applications

Code Wizard, 4-2
downloading from Oracle Technology

Network, A-1
Oracle Multimedia directory location, A-1
Oracle Multimedia Java API, 5-1
Oracle Multimedia Java Servlet Photo

Album, 3-23
Oracle Multimedia JSP Photo Album, 3-32
PL/SQL Web Toolkit Photo Album, 3-2

SQL*Loader
loading data, 1-12

T
technical metadata, 6-1

U
upgrading an Oracle Multimedia installation, B-5
uploading media

Oracle Multimedia Servlets and JSP Java
API, 2-25

PL/SQL, 2-8, 2-11

V
verifying an Oracle Multimedia installation, B-4
video data examples, 9-22

X
XML

representing metadata, 6-3
XMP standard, 6-3

Index-4

	Contents
	List of Examples
	List of Figures
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Oracle Multimedia?
	New Features for Release 11.2
	Status of ORDImage Support for DICOM in Release 11.2

	1 Introduction to Oracle Multimedia
	1.1 Oracle Multimedia Architecture
	1.2 Object Relational Technology
	1.3 Oracle Multimedia Capabilities
	1.4 Audio Concepts
	1.4.1 Digitized Audio
	1.4.2 Audio Components

	1.5 ORDDoc or Heterogeneous Media Data Concepts
	1.5.1 Digitized Heterogeneous Media Data
	1.5.2 Heterogeneous Media Data Components

	1.6 Image Concepts
	1.6.1 Digitized Images
	1.6.2 Image Components
	1.6.3 Metadata in Images
	1.6.4 Medical Imaging
	1.6.5 Metadata Extraction
	1.6.6 Image Processing
	1.6.7 SQL/MM Still Image Standard Support

	1.7 Video Concepts
	1.7.1 Digitized Video
	1.7.2 Video Components

	1.8 Loading Multimedia Data
	1.9 Multimedia Storage and Querying
	1.9.1 Storing Multimedia Data
	1.9.2 Querying Multimedia Data

	1.10 Accessing Multimedia Data
	1.10.1 Oracle Multimedia Java API
	1.10.2 Streaming Content from Oracle Database
	1.10.3 Support for Web Technologies
	1.10.4 Oracle Multimedia Support for Java Advanced Imaging (JAI)

	1.11 Extending Oracle Multimedia

	2 Oracle Multimedia Application Development
	2.1 Overview of the Application Development Environment
	2.1.1 Java Class Libraries and Other Packages and Interfaces
	2.1.2 Integration With PL/SQL Gateway and PL/SQL Web Toolkit
	2.1.3 Integration With Components in Other Oracle Development Tools
	2.1.4 Integration With Third-Party Streaming Media Servers

	2.2 Developing PL/SQL Client Applications Using the PL/SQL API
	2.2.1 Setting Up Your Environment for PL/SQL
	2.2.2 Media Query in PL/SQL
	2.2.3 Media Download in PL/SQL
	2.2.4 Media Upload in PL/SQL
	2.2.5 Handling Oracle Multimedia Exceptions in PL/SQL
	2.2.5.1 Handling the Setting of Properties for Unknown Image Formats in PL/SQL
	2.2.5.2 Handling Image Processing for Unknown Image Formats in PL/SQL

	2.3 Developing PL/SQL Web Applications
	2.3.1 Using the PL/SQL Gateway and PL/SQL Web Toolkit

	2.4 Developing Java Client Applications Using JDBC
	2.4.1 Setting Up Your Environment for Java
	2.4.2 Media Retrieval in Java
	2.4.3 Media Upload in Java
	2.4.4 Handling Oracle Multimedia Exceptions in Java
	2.4.4.1 Handling the Setting of Properties for Unknown Image Formats in Java
	2.4.4.2 Handling Image Processing for Unknown Image Formats in Java

	2.5 Developing Java-Based Web Applications
	2.5.1 Media Retrieval in Java-Based Web Applications
	2.5.1.1 Media URL
	2.5.1.2 Media Delivery Component

	2.5.2 Media Upload in Java-Based Web Applications

	3 Oracle Multimedia Photo Album Sample Applications
	3.1 Oracle Multimedia PL/SQL Photo Album Sample Application
	3.1.1 Running the PL/SQL Photo Album Application
	3.1.2 Description of the PL/SQL Photo Album Application
	3.1.2.1 Browsing the Photo Album
	3.1.2.2 Adding Images to the Photo Album
	3.1.2.3 Searching for Images by Keyword or Phrase
	3.1.2.4 Viewing Full-Size Images
	3.1.2.5 Examining Image Metadata
	3.1.2.6 Writing New XMP Metadata to Images
	3.1.2.7 Searching for Images That Contain Specific Metadata Attributes

	3.2 Oracle Multimedia Java Servlet Photo Album Sample Application
	3.2.1 Running the Java Servlet Photo Album Application
	3.2.2 Description of the Java Servlet Photo Album Application

	3.3 Oracle Multimedia JSP Photo Album Sample Application
	3.3.1 Running the JSP Photo Album Application
	3.3.2 Description of the JSP Photo Album Application

	4 Oracle Multimedia Code Wizard Sample Application for the PL/SQL Gateway
	4.1 Running the Code Wizard Sample Application
	4.2 Description of the Code Wizard Sample Application
	4.2.1 Creating a New DAD or Choosing an Existing DAD
	4.2.2 Authorizing a DAD
	4.2.3 Creating and Testing Media Upload and Retrieval Procedures
	4.2.4 Creating a Media Upload Procedure
	4.2.5 Creating a Media Retrieval Procedure
	4.2.6 Using the PL/SQL Gateway Document Table
	4.2.7 How Time Zone Information Is Used to Support Browser Caching

	4.3 Sample Session 1: Using Images
	4.4 Sample Session 2: Using Multiple Object Columns
	4.5 Known Restrictions of the Oracle Multimedia Code Wizard

	5 Oracle Multimedia Java API Sample Application
	5.1 Running the Oracle Multimedia Java API Sample Application
	5.2 Description of the Oracle Multimedia Java API Sample Application
	5.2.1 Operations in the IMProductDialog Class
	5.2.2 Operations in the IMImagePanel Class
	5.2.3 Operations in the IMGetMetadataDialog Class
	5.2.4 Operations in the IMPutMetadataDialog Class
	5.2.5 Operations in the IMVideoPanel Class
	5.2.6 Operations in the IMAudioPanel Class
	5.2.7 Operations in the IMDocPanel Class
	5.2.8 Operations in the IMLoadFile Class
	5.2.9 Operations in the IMUtil Class

	6 Working with Metadata in Oracle Multimedia Images
	6.1 Metadata Concepts
	6.2 Oracle Multimedia Image Metadata Concepts
	6.3 Image File Formats
	6.4 Image Metadata Formats
	6.4.1 EXIF
	6.4.2 IPTC-IIM
	6.4.3 XMP

	6.5 Representing Metadata Outside Images
	6.6 Oracle Multimedia Image Metadata Examples
	6.6.1 Creating a Table for Metadata Storage
	6.6.2 Extracting Image Metadata
	6.6.3 Embedding Image Metadata

	6.7 Metadata References

	7 Extending Oracle Multimedia
	7.1 Supporting Other External Sources
	7.1.1 Packages or PL/SQL Plug-ins
	7.1.1.1 ORDPLUGINS.ORDX_FILE_SOURCE Package
	7.1.1.2 ORDPLUGINS.ORDX_HTTP_SOURCE Package
	7.1.1.3 Extending Oracle Multimedia to Support a New Data Source

	7.2 Supporting Other Media Data Formats
	7.2.1 Supporting Other ORDAudio Data Formats
	7.2.1.1 ORDPLUGINS.ORDX_DEFAULT_AUDIO Package
	7.2.1.2 Extending Oracle Multimedia to Support a New Audio Data Format

	7.2.2 Supporting Other ORDDoc Data Formats
	7.2.2.1 ORDPLUGINS.ORDX_DEFAULT_DOC Package
	7.2.2.2 Extending Oracle Multimedia to Support a New ORDDoc Data Format

	7.2.3 Supporting Other Video Data Formats
	7.2.3.1 ORDPLUGINS.ORDX_DEFAULT_VIDEO Package
	7.2.3.2 Extending Oracle Multimedia to Support a New Video Data Format

	7.2.4 Supporting Other Image Data Formats

	7.3 Extending Oracle Multimedia with a New Type
	7.4 Supporting Media Data Processing
	7.4.1 Supporting Audio Data Processing
	7.4.2 Supporting Video Data Processing

	8 Oracle Multimedia Tuning Tips for DBAs
	8.1 Understanding the Performance Profile of Oracle Multimedia Operations
	8.2 Choosing LOB Storage Parameters for Oracle Multimedia Objects
	8.2.1 SecureFile LOBs and BasicFile LOBs
	8.2.2 TABLESPACE
	8.2.3 CACHE, NOCACHE, and CACHE READS
	8.2.4 LOGGING and NOLOGGING
	8.2.5 CHUNK
	8.2.6 Example of Setting LOB Storage Options

	8.3 Setting Database Initialization Parameters

	9 Oracle Multimedia Examples
	9.1 Audio Data Examples
	9.1.1 Using Audio Types with Object Views
	9.1.2 Scripts for Populating an ORDAudio Object with BLOB Data
	9.1.2.1 Create an Audio Data Load Directory
	9.1.2.2 Create and Populate the soundtable Table
	9.1.2.3 Create the audio_table Table
	9.1.2.4 Load the Audio Data
	9.1.2.5 Copy the BLOB Data to the ORDAudio Object
	9.1.2.6 Show the Properties of the Loaded Audio Data
	9.1.2.7 Automate the ORDAudio Examples
	9.1.2.8 Clean Up the ORDAudio Examples

	9.2 Media Data Examples
	9.2.1 Scripts for Populating an ORDDoc Object from a File Data Source
	9.2.1.1 Create a Media Data Load Directory
	9.2.1.2 Create the doc_table Table
	9.2.1.3 Load the Media Data
	9.2.1.4 Read the Media Data from the BLOB
	9.2.1.5 Show the Properties of the Loaded Media Data
	9.2.1.6 Automate the ORDDoc Examples
	9.2.1.7 Clean Up the ORDDoc Examples

	9.3 Image Data Examples
	9.3.1 Scripts for Populating an ORDImage Object from a File Data Source
	9.3.1.1 Create an Image Data Load Directory
	9.3.1.2 Create the image_table Table
	9.3.1.3 Load the Image Data
	9.3.1.4 Read the Image Data from the BLOB
	9.3.1.5 Show the Properties of the Loaded Image Data
	9.3.1.6 Automate the ORDImage Examples
	9.3.1.7 Clean Up the ORDImage Examples

	9.3.2 Loading an Image Table from an HTTP Data Source
	9.3.3 Addressing Globalization Support Issues

	9.4 Video Data Examples

	A Oracle Multimedia Sample Applications
	A.1 Oracle Multimedia ORDImage OCI C Sample Application
	A.2 Oracle Multimedia PL/SQL Sample Applications
	A.3 Oracle Multimedia Java Sample Applications
	A.4 Other Oracle Multimedia Sample Applications

	B Managing Oracle Multimedia Installations
	B.1 Oracle Multimedia Installed Users and Privileges
	B.2 Installing and Configuring Oracle Multimedia
	B.2.1 Preinstallation Steps
	B.2.2 Installation and Configuration Steps

	B.3 Verifying an Installed Version of Oracle Multimedia
	B.4 Upgrading an Installed Version of Oracle Multimedia
	B.5 Downgrading an Installed Version of Oracle Multimedia
	B.6 Removing Oracle Multimedia

	Glossary
	Index
	A
	C
	D
	E
	G
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	X

