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Preface

This manual describes the programmatic interfaces to Oracle Data Mining. You can 
use the PL/SQL and Java interfaces to create data mining applications or add data 
mining features to existing applications. You can use the data mining SQL operators in 
applications or in ad hoc queries.

This manual should be used along with the demo applications and the related 
reference documentation. (See "Related Documentation" on page ii-vi.)

The preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documentation

■ Conventions

Audience
This manual is intended for database programmers who are familiar with Oracle Data 
Mining.

Documentation Accessibility
For information about Oracle's commitment to accessibility, visit the Oracle 
Accessibility Program website at 
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For 
information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or 
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing 
impaired.

Note: The Oracle Data Mining Java API is deprecated in this release.

Oracle recommends that you not use deprecated features in new 
applications. Support for deprecated features is for backward 
compatibility only
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Related Documentation
The documentation set for Oracle Data Mining is part of the Oracle Database 11g 
Release 2 (11.2) Online Documentation Library. The Oracle Data Mining 
documentation set consists of the following documents:

■ Oracle Data Mining Concepts 

■ Oracle Data Mining Java API Reference (javadoc)

■ Oracle Data Mining Administrator's Guide

■ Oracle Database PL/SQL Packages and Types Reference (DBMS_DATA_MINING, DBMS_
DATA_MINING_TRANSFORM, and DBMS_PREDICTIVE_ANALYTICS)

■ Oracle Database SQL Language Reference (Data Mining functions) 

Conventions
The following text conventions are used in this document:

Note: Information to assist you in installing and using the Data 
Mining demo programs is provided in Oracle Data Mining 
Administrator's Guide.

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated 
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for 
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code 
in examples, text that appears on the screen, or text that you enter.
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What's New in the Oracle Data Mining APIs?

This section describes new features in the Oracle Data Mining APIs. It includes the 
following sections:

■ Oracle Data Mining 11g Release 2 (11.2.0.3) API New Features

■ Oracle Data Mining 11g Release 2 (11.2.0.1) API New Features

Oracle Data Mining 11g Release 2 (11.2.0.3) API New Features
The Oracle Data Mining Java API is deprecated in this release.

Oracle Data Mining 11g Release 2 (11.2.0.1) API New Features
This section lists the changes that have been introduced in the Oracle Data Mining 11.2 
PL/SQL API:

■ Support for Native Transactional Data with Association Rules

In Oracle Data Mining 11g Release 2 (11.2), you can build association rules models 
without first transforming the transactional data. 

■ SVM Class Weights Specified with CLAS_WEIGHTS_TABLE_NAME

Previously SVM class weights were specified in the priors table (CLAS_PRIORS_
TABLE_NAME setting). Now SVM class weights and GLM class weights are both 
specified in a class weights table (CLAS_WEIGHTS_TABLE_NAME setting) 

■ FORCE argument to DROP_MODEL

See Also: Oracle Data Mining Concepts for additional information 
about new features and for information about features that were new 
or deprecated in Oracle Data Mining 11g Release 1

Note: Oracle recommends that you not use deprecated features in 
new applications. Support for deprecated features is for backward 
compatibility only

See: "Market Basket Data" on page 3-11

See: DBMS_DATA_MINING setting CLAS_WEIGHTS_TABLE_NAME in Oracle 
Database PL/SQL Packages and Types Reference
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You can now force a drop model operation even if a serious system error has 
interrupted the model build process.

■ GET_MODEL_DETAILS_SVM has new REVERSE_COEF parameter

To preserve model transparency, the GET_MODEL_DETAILS functions automatically 
reverse the transformations generated by ADP during the model build. You can 
obtain the transformed attribute coefficients used internally by an SVM model by 
setting the new reverse_coef parameter to 1. This causes the coefficients and bias 
to be returned with the normalization shifts and scales applied by ADP.

See: DBMS_DATA_MINING.DROP_MODEL procedure in Oracle Database 
PL/SQL Packages and Types Reference

See: DBMS_DATA_MINING.GET_MODEL_DETAILS_SVM in Oracle Database 
PL/SQL Packages and Types Reference
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1 Data Mining API Use Cases

This chapter shows how you can perform complex data mining operations by using 
simple SQL queries and PL/SQL procedures. The examples show techniques for 
obtaining valuable information about your customers. This kind of information is 
needed to answer business questions, such as: How should we position a product? 
When should we introduce a new product? What pricing and sales promotion 
strategies should we use?

This chapter contains the following topics:

■ Analyze Customer Demographics and Buying Patterns

■ Evaluate the Success of a Marketing Campaign

■ Use Predictive Analytics to Create a Customer Profile

Analyze Customer Demographics and Buying Patterns
The code fragments in this section show how you can apply data mining models to 
learn more about your customers.

These examples use models that were previously created. They exist in Oracle 
Database as database objects. For the sake of simplicity, we can assume that you 
created the models, that they exist within your schema, and that you are executing the 
SQL statements that apply them. You could have used the PL/SQL API or  Oracle 
Data Miner to create the models.

Note: The base interfaces to Oracle Data Mining are PL/SQL 
packages and SQL functions. Most of the examples throughout this 
manual use PL/SQL and SQL code. 

See Also:

■ Chapter 6, "Scoring and Deployment"

■ Oracle Database SQL Language Reference for syntax of the SQL Data 
Mining functions

■ Oracle Database PL/SQL Packages and Types Reference for syntax of 
the PL/SQL API

See Also: Chapter 5, "Building a Model"
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The primary method for applying data mining models is by executing specialized SQL 
functions. There exists a separate family of SQL functions for prediction, clustering, 
and feature extraction. 

Segment Customer Base and Predict Attrition
The query in Example 1–1 divides customers into segments and predicts customer 
attrition. 

The segments are created by a clustering model named clus_model. The model uses 
heuristics to divide the customer database into groups that have similar 
characteristics.The prediction is generated by a classification model called svmC_model.

The model predicts the attrition probability for each customer in each segment. The 
data is returned by segment, ordered by the overall attrition propensity in the 
segment.

Example 1–1 Predict Attrition for Customer Segments

SELECT count(*) as cnt, 
       AVG(PREDICTION_PROBABILITY(svmC_model,
               'attrite' USING *)) as avg_attrite,
       AVG(cust_value_score)
  FROM customers 
 GROUP BY CLUSTER_ID(clus_model USING *)
 ORDER BY avg_attrite DESC;

The sophisticated analytics within this seemingly simple query let you see your 
customer base within natural groupings based on similarities. The SQL data mining 
functions show you where your most loyal and least loyal customers are. This 
information can help you make decisions about how to sell your product. For example, 
if most of the customers in one segment have a high probability to attrite, you might 
take a closer look at the demographics of that segment when considering your 
marketing strategy.

The CLUSTER_ID function in Example 1–1 applies the mining model clus_model to the 
customers table. It returns the segment for each customer. The number of segments is 
determined by the clustering algorithm. Oracle Data Mining supports two clustering 
algorithms: enhanced k-Means and O-Cluster.

The PREDICTION_PROBABILITY function in Example 1–1 applies the mining model 
svmC_model and returns the probability to attrite for each customer. Oracle Data 
Mining supports a number of classification algorithms. In this case, the model name 
implies that Support Vector Machine was chosen as the classifier.

Predict Missing Incomes
The sample query in Example 1–2 returns the ten customers who are most likely to 
attrite, based on age, gender, annual_income, and zipcode. 

In addition, since annual_income is often missing, the PREDICTION function is used to 
perform missing value imputation for the annual_income attribute. The PREDICTION 

See Also: Chapter 6, "Scoring and Deployment"

Note: The examples in the first two sections of this chapter illustrate 
SQL syntax for different use cases, but the code uses hypothetical 
object names. For example, a table might be named my_table.
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function applies the regression model, svmR_model, to predict the most likely annual 
income. The NVL function replaces missing annual income values with the resulting 
prediction. 

Example 1–2 Predict Customer Attrition and Transform Missing Income Values

SELECT * FROM (
  SELECT cust_name, cust_contact_info
    FROM customers
   ORDER BY 
     PREDICTION_PROBABILITY(tree_model, 'attrite'
       USING age, gender, zipcode,
         NVL(annual_income, 
             PREDICTION(svmR_model USING *)) 
           as annual_income) DESC)
WHERE rownum < 11;

Find Anomalies in the Customer Data
These examples use a one-class SVM model to discover atypical customers (outliers), 
find common demographic characteristics of the most typical customers, and compute 
the probability that a new or hypothetical customer will be a typical affinity card 
holder.

Find the Top 10 Outliers
Find the top 10 outliers -- customers that differ the most from the rest of the 
population. Depending on the application, such atypical customers can be removed 
from the data.

SELECT cust_id FROM (
 SELECT cust_id
 FROM svmo_sh_sample_prepared
  ORDER BY prediction_probability(SVMO_SH_Clas_sample, 0 using *) DESC, 1)
WHERE rownum < 11;

Compute the Probability of a New Customer Being a Typical Affinity Card Member
Compute the probability of a new or hypothetical customer being a typical affinity 
card holder. Normalization of the numerical attributes is performed on-the-fly.

WITH age_norm AS (
   SELECT shift, scale FROM SVMO_SH_sample_norm WHERE col = 'AGE'),
     yrs_residence_norm AS (
       SELECT shift, scale FROM svmo_sh_sample_norm WHERE col = 'YRS_RESIDENCE')
       SELECT prediction_probability(SVMO_SH_Clas_sample, 1 using 
                             (44 - a.shift)/a.scale AS age,
                             (6 - b.shift)/b.scale AS yrs_residence,
                             'Bach.' AS education,
                             'Married' AS cust_marital_status,
                             'Exec.' AS occupation,
                             'United States of America' AS country_name,
                             'M' AS cust_gender,
                             'L: 300,000 and above' AS cust_income_level,
                             '3' AS houshold_size
                             ) prob_typical
FROM age_norm a, yrs_residence_norm b;
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Find the Demographics of a Typical Affinity Card Member
Find demographic characteristics of the typical affinity card members. These statistics 
will not be influenced by outliers and are likely to provide a more truthful picture of 
the population of interest than statistics computed on the entire group of affinity 
members. 

SELECT a.cust_gender, round(avg(a.age)) age, 
       round(avg(a.yrs_residence)) yrs_residence,
       count(*) cnt
FROM mining_data_one_class_v a
WHERE PREDICTION(SVMO_SH_Clas_sample using *) = 1
GROUP BY a.cust_gender
ORDER BY a.cust_gender;  

Evaluate the Success of a Marketing Campaign
This example uses a classification model to predict who will respond to a marketing 
campaign for DVDs and why. 

1. First predict the responders.

This statement uses the PREDICTION and PREDICTION_DETAILS functions to apply 
the model campaign_model.

SELECT cust_name, 
   PREDICTION(campaign_model USING *) 
      AS responder,
   PREDICTION_DETAILS(campaign_model USING *) 
      AS reason
FROM customers;

2. Combine the predictions with relational data.

This statement combines the predicted responders with additional information 
from the sales table. In addition to predicting the responders, it shows how much 
each customer has spent for a period of three months before and after the start of 
the campaign.

SELECT cust_name, 
        PREDICTION(campaign_model USING *) AS responder,
        SUM(CASE WHEN purchase_date < 15-Apr-2005 THEN
            purchase_amt ELSE 0 END) AS pre_purch,
        SUM(CASE WHEN purchase_date >= 15-Apr-2005 THEN
            purchase_amt ELSE 0 END) AS post_purch
 FROM customers, sales 
 WHERE sales.cust_id = customers.cust_id 
   AND purchase_date BETWEEN 15-Jan-2005 AND 14-Jul-2005
 GROUP BY cust_id, PREDICTION(campaign_model USING *);

3. Combine the predictions and relational data with multi-domain, multi-database 
data. 

In addition to predicting responders, find out how much each customer has spent 
on DVDs for a period of three months before and after the start of the campaign. 

SELECT cust_name, 
        PREDICTION(campaign_model USING *) as responder,
        SUM(CASE WHEN purchase_date < 15-Apr-2005 THEN
            purchase_amt ELSE 0 END) AS pre_purch,
        SUM(CASE WHEN purchase_date >= 15-Apr-2005 THEN
            purchase_amt ELSE 0 END) AS post_purch
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 FROM customers, sales, products@PRODDB 
 WHERE sales.cust_id = customers.cust_id 
   AND purchase_date BETWEEN 15-Jan-2005 AND 14-Jul-2005
   AND sales.prod_id = products.prod_id
   AND CONTAINS(prod_description, 'DVD') > 0 
 GROUP BY cust_id, PREDICTION(campaign_model USING *);

4. Evaluate the effectiveness and significance of the information you have obtained.   

Compare the success rate of predicted responders and non-responders within 
different regions and across the company. Is the success statistically significant?

SELECT responder, cust_region, COUNT(*) AS cnt,
       SUM(post_purch – pre_purch) AS tot_increase,
       AVG(post_purch – pre_purch) AS avg_increase,
       STATS_T_TEST_PAIRED(pre_purch, post_purch) AS significance
FROM (
 SELECT cust_name, cust_region
        PREDICTION(campaign_model USING *) AS responder,
        SUM(CASE WHEN purchase_date < 15-Apr-2005 THEN
            purchase_amt ELSE 0 END) AS pre_purch,
        SUM(CASE WHEN purchase_date >= 15-Apr-2005 THEN
            purchase_amt ELSE 0 END) AS post_purch
 FROM customers, sales, products@PRODDB 
 WHERE sales.cust_id = customers.cust_id 
   AND purchase_date BETWEEN 15-Jan-2005 AND 14-Jul-2005
   AND sales.prod_id = products.prod_id
   AND CONTAINS(prod_description, 'DVD') > 0 
 GROUP BY cust_id, PREDICTION(campaign_model USING *) )
GROUP BY ROLLUP responder, cust_region ORDER BY 4 DESC;

Use Predictive Analytics to Create a Customer Profile
Predictive analytics, implemented in the DBMS_PREDICTIVE_ANALYTICS package, 
supports routines for making predictions, assessing attribute importance, and creating 
profiles. Example 1–3 shows how you could use predictive analytics to generate a 
customer profile.

The PROFILE statement in Example 1–3 returns rules that suggest whether or not a 
customer is likely to use an affinity card. The rules are generated based on two 
predictors: customer gender and customer occupation. The rules are written as XML to 
a results table with these columns.

 Name                        Type
 -------------------------    ------------
 PROFILE_ID                   NUMBER
 RECORD_COUNT                 NUMBER
 DESCRIPTION                  XMLTYPE

Note: With predictive analytics, you do not need to create a model. 
The routine dynamically creates and applies a model, which does not 
persist upon completion.

See Also: Oracle Data Mining Concepts for an overview of Oracle 
predictive analytics
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The rule identifier is stored in PROFILE_ID. The number of cases described by the rule 
is stored in RECORD_COUNT. The XML that describes the rule is stored in the 
DESCRIPTION column.

Example 1–3 Generate a Customer Profile 

--create a source view
CREATE VIEW cust_gend_occ_view AS
                 SELECT cust_gender, occupation, affinity_card
                 FROM mining_data_apply;

-- describe the source data
DESCRIBE cust_gend_occ_view
 Name                            Null?    Type
 ----------------------------------------------
 CUST_GENDER                     VARCHAR2(1)
 OCCUPATION                      VARCHAR2(21)
 AFFINITY_CARD                   NUMBER(10)

-- find the rules
BEGIN
    DBMS_PREDICTIVE_ANALYTICS.PROFILE(
         DATA_TABLE_NAME    => 'cust_gend_occ_view',
         TARGET_COLUMN_NAME => 'affinity_card',
         RESULT_TABLE_NAME  => 'profile_result');
END;
/

-- PROFILE has created 5 rules
SELECT profile_id from cust_gend_occ_profile_results;

PROFILE_ID
----------
         1
         2
         3
         4
         5

-- display the rules

<SimpleRule id="1" score="1" recordCount="275">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">"Exec." "Prof." "Protec."
      </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="CUST_GENDER" booleanOperator="isIn">
      <Array type="string">"M"</Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
<ScoreDistribution value="1" recordCount="146"/>
<ScoreDistribution value="0" recordCount="129"/>
</SimpleRule>

Note: This example uses sample data based on the SH schema. This 
data is used with the Data Mining sample programs. For information 
on the sample programs, see Oracle Data Mining Administrator's Guide.
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<SimpleRule id="2" score="0" recordCount="124">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">"Exec." "Prof." "Protec."
      </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="CUST_GENDER" booleanOperator="isIn">
      <Array type="string">"F"
      </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
<ScoreDistribution value="0" recordCount="96"/>
<ScoreDistribution value="1" recordCount="28"/>
</SimpleRule>

<SimpleRule id="3" score="0" recordCount="397">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="CUST_GENDER" booleanOperator="isIn">
      <Array type="string">"M"
      </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">"Crafts" "Sales" "TechSup" "Transp."
      </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
<ScoreDistribution value="0" recordCount="289"/>
<ScoreDistribution value="1" recordCount="108"/>
</SimpleRule>

<SimpleRule id="4" score="0" recordCount="316">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="CUST_GENDER" booleanOperator="isIn">
      <Array type="string">"M"
      </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">
        "?" "Cleric." "Farming" "Handler" "House-s" "Machine" "Other"
      </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
<ScoreDistribution value="0" recordCount="277"/>
<ScoreDistribution value="1" recordCount="39"/>
</SimpleRule

<SimpleRule id="5" score="0" recordCount="388">
  <CompoundPredicate booleanOperator="and">
    <SimpleSetPredicate field="OCCUPATION" booleanOperator="isIn">
      <Array type="string">
        "?" "Cleric." "Crafts" "Farming" "Handler" "House-s" "Machine" 
        "Other" "Sales" "TechSup" "Transp."
      </Array>
    </SimpleSetPredicate>
    <SimpleSetPredicate field="CUST_GENDER" booleanOperator="isIn">
      <Array type="string">"F"
      </Array>
    </SimpleSetPredicate>
  </CompoundPredicate>
<ScoreDistribution value="0" recordCount="363"/>
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<ScoreDistribution value="1" recordCount="25"/>
</SimpleRule>



2

A Tour of the Data Mining APIs 2-1

2  A Tour of the Data Mining APIs

This chapter provides an overview of the PL/SQL, SQL, and Java interfaces to Oracle 
Data Mining.

This chapter contains the following sections:

■ Data Mining PL/SQL Packages

■ Data Mining Data Dictionary Views

■ Data Mining SQL Functions

■ Data Mining Java API

Data Mining PL/SQL Packages
The PL/SQL interface to Oracle Data Mining is implemented in three packages:

■ DBMS_DATA_MINING, the primary interface to Oracle Data Mining

■ DBMS_DATA_MINING_TRANSFORM, convenience routines for data transformation

■ DBMS_PREDICTIVE_ANALYTICS, predictive analytics

DBMS_DATA_MINING
The DBMS_DATA_MINING package includes procedures for: 

■ Creating, dropping, and renaming mining models

■ Applying a model to new data

■ Describing the model details

■ Creating costs and computing test metrics for a classification model

■ Exporting and importing models

CREATE_MODEL
The CREATE_MODEL procedure creates a mining model. The attributes, transformations, 
rules, and other information internal to the model are returned by GET_MODEL_DETAILS 

Note: The Oracle Data Mining Java API is deprecated in this release.

Oracle recommends that you not use deprecated features in new 
applications. Support for deprecated features is for backward 
compatibility only
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functions. You can also obtain information about mining models by querying data 
dictionary views, as described in "Data Mining Data Dictionary Views" on page 2-3. 

APPLY
The APPLY procedure creates a table with specific columns and populates the columns 
with mining results. The columns of this table vary based on the particular mining 
function and algorithm.

DBMS_DATA_MINING_TRANSFORM
This package includes routines for transforming the data to make it suitable for 
mining. Since Oracle Data Mining supports Automatic Data Transformation (ADP), 
you will not need to use this package unless you want to implement specialized 
transformations.

You can supplement the ADP-generated transformations with additional 
transformations that you specify yourself, or you can elect to transform the data 
yourself instead of using ADP.

The routines in DBMS_DATA_MINING_TRANSFORM are convenience routines to assist you in 
creating your own transformations. If these routines do not entirely suit your needs, 
you can write SQL to modify their output, or you can write your own routines.

To specify transformations for a model, pass a transformation list to the DBMS_DATA_
MINING.CREATE_MODEL procedure. You can use the STACK procedures in DBMS_DATA_
MINING_TRANSFORM to build the transformation list.

Oracle Data Mining embeds automatic transformations and transformations you pass 
to CREATE_MODEL in the model. The embedded transformations are automatically 
applied to the data when the model is applied. You do not need to separately 
transform the test or scoring data.

DBMS_PREDICTIVE_ANALYTICS
This package includes routines for predictive analytics, an automated form of data 
mining. With predictive analytics, you do not need to be aware of model building or 
scoring. All mining activities are handled internally by the predictive analytics 
procedure.

Predictive analytics routines prepare the data, build a model, score the model, and 
return the results of model scoring. Before exiting, they delete the model and 
supporting objects.

Oracle predictive analytics supports these routines:

■ EXPLAIN ranks attributes in order of influence in explaining a target column.

Note: The Data Mining SQL functions, introduced in Oracle 
Database 10.2, are now generally the preferred method for applying 
Data Mining models. See "Data Mining SQL Functions" on page 3.

See Also:

■ DBMS_DATA_MINING_TRANSFORM in Oracle Database PL/SQL Packages 
and Types Reference

■ Oracle Data Mining Concepts for information about automatic and 
embedded data transformation



Data Mining SQL Functions

A Tour of the Data Mining APIs 2-3

■ PREDICT predicts the value of a target column based on values in the input data.

■ PROFILE generates rules that describe the cases from the input data.

Data Mining Data Dictionary Views
You can obtain information about mining models from the data dictionary. The data 
dictionary views for Oracle Data Mining are available for ALL_, USER_, and DBA_ access.

The Data Mining data dictionary views are summarized as follows:

■ ALL_MINING_MODELS returns information about the mining models to which you 
have access.

See "Mining Model Schema Objects" on page 5-8.

■ ALL_MINING_MODEL_ATTRIBUTES returns information about the attributes of the 
mining models to which you have access.

See "About Attributes" on page 3-3.

■ ALL_MINING_MODEL_SETTINGS returns information about the settings for the mining 
models to which you have access.

See "Model Settings" on page 5-2.

Data Mining SQL Functions
The built-in SQL functions for Data Mining implement scoring operations for models 
that have already been created in the database. They provide the following benefits:

■ Models can be easily deployed within the context of existing SQL applications.

■ Scoring operations take advantage of existing query execution functionality. This 
provides performance benefits, especially in the case of single row scoring.

■ Scoring results are pipelined, enabling the rows to be returned iteratively as they 
are produced. Pipelining is an optimization that greatly improves performance. 
For information about pipelining, see Oracle Database PL/SQL Language Reference.

When applied to a given row of scoring data, classification and regression models 
provide the best predicted value for the target and the associated probability of that 
value occurring. The SQL functions for prediction are described in Table 2–1.

See Also: DBMS_PREDICTIVE_ANALYTICS in Oracle Database PL/SQL 
Packages and Types Reference

Note: SQL functions are built into Oracle Database and are available 
for use within SQL statements. SQL functions should not be confused 
with functions defined in PL/SQL packages.

Table 2–1 SQL Functions for Prediction

Function Description

PREDICTION Returns the best prediction for the target

PREDICTION_BOUNDS (GLM only) Returns the upper and lower bounds of the 
interval wherein the values (linear regression) or probabilities 
(logistic regression) will lie 

PREDICTION_COST Returns a measure of the cost of incorrect predictions



Data Mining Java API

2-4 Oracle Data Mining Application Developer's Guide

Applying a cluster model to a given row of scoring data returns the cluster ID and the 
probability of that row's membership in the cluster. The SQL functions for clustering 
are described in Table 2–2.

Applying a feature extraction model involves the mapping of features (sets of 
attributes) to columns in the scoring data set. The SQL functions for feature extraction 
are described in Table 2–3.

Data Mining Java API
The Oracle Data Mining Java API is an Oracle implementation of the JDM standard 
(JSR-73) Java API. It is a thin API developed using the rich in-database functionality of 
Oracle Data Mining. 

The Oracle Data Mining Java API implements Oracle specific extensions to provide all 
the data mining features available in the database. All extensions are designed to be 
compliant with the JDM standards extension framework. All the mining functions and 
algorithms available in the database are exposed through the Oracle Data Mining Java 
API.

PREDICTION_DETAILS Returns the rules of a Decision Tree model

PREDICTION_PROBABILITY Returns the probability of a given prediction

PREDICTION_SET Returns the results of a classification model, including the 
predictions and associated probabilities for each case

Table 2–2 SQL Functions for Clustering

Function Description

CLUSTER_ID Returns the ID of the predicted cluster

CLUSTER_PROBABILITY Returns the probability of a case belonging to a given cluster

CLUSTER_SET Returns a list of all possible clusters to which a given case 
belongs along with the associated probability of inclusion

Table 2–3 SQL Functions for Feature Extraction

Function Description

FEATURE_ID Returns the ID of the feature with the highest coefficient value

FEATURE_SET Returns a list of objects containing all possible features along 
with the associated coefficients

FEATURE_VALUE Returns the value of a given feature

See Also: Chapter 6, "Scoring and Deployment"

Note: The Oracle Data Mining Java is deprecated in this release.

Oracle recommends that you not use deprecated features in new 
applications. Support for deprecated features is for backward 
compatibility only

Table 2–1 (Cont.) SQL Functions for Prediction

Function Description
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Oracle Database 10.2.0.1 introduced the JDM 1.0 standard compliant API that replaced 
the old Oracle proprietary Java API in the previous releases. Database 10.2.0.2 
patch-set release extended the JDM standards support by implementing Oracle Data 
Mining Java API compatible with JDM 1.1. 

In this release, the Oracle Data Mining Java API continues to be compatible with the 
JDM 1.1 and provides new data mining functionality in the database server as Oracle 
extensions. In this release new Oracle features include automatic and embedded data 
preparation, generalized linear models, transformation sequencing and task 
dependency specifications. 

The JDM Standard
JDM is an industry standard Java API for data mining developed under the Java 
Community Process (JCP). It defines Java interfaces that vendors can implement for 
their Data Mining Engine (DME). It includes interfaces supporting mining functions 
such as classification, regression, clustering, attribute importance and association 
along with specific mining algorithms such as naïve bayes, support vector machines, 
decision trees, feed forward neural networks, and k-means. 

An overview of the Java packages defined by the standards is listed in Table 2–4. For 
more details, refer to the Java documentation published with the standard at 
http://www.jcp.org. In the Go to JSR box, type in 73. 

Table 2–4 JDM Standard Java Packages

Package Description

javax.datamining Defines objects supporting all JDM subpackages.

javax.datamining.base Defines objects supporting many top-level mining objects. Introduced to 
avoid cyclic package dependencies.

javax.datamining.resource Defines objects that support connecting to the Data Mining ENgine and 
executing tasks.

javax.datamining.data Defines objects supporting logical and physical data, model signature, 
taxonomy, category set and the generic super class category matrix.

javax.datamining.statistics Defines objects supporting attribute statistics.

javax.datamining.rules Defines objects supporting rules and their predicate components.

javax.datamining.task Defines objects supporting tasks for build, compute statistics, import, 
and export. Task has an optional subpackage for apply since apply is 
used mainly for supervised and clustering functions.

javax.datamining.association Defines objects supporting the build settings and model for association.

javax.datamining.clustering Defines objects supporting the build settings and model for clustering.

javax.datamining.attributeimportance Defines objects supporting the build settings and model for attribute 
importance.

javax.datamining.supervised Defines objects supporting the build settings and models for supervised 
learning functions, specifically classification and regression, with 
corresponding optional packages. It also includes a common test task 
for the classification and regression functions.

javax.datamining.algorithm Defines objects supporting the settings that are specific to algorithms. 
The algorithm package has optional sub packages for different 
algorithms.

javax.datamining.modeldetail Defines objects supporting details of various model representation. 
Model Details has optional sub packages for different model details.
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Oracle Extensions to JDM
Oracle extensions are defined to support the functionality that is not part of the JDM 
standards. This section gives an overview of these extensions.

Oracle extensions have the following major additional features:

■ Feature Extraction function with the Non-negative Matrix Factorization (NMF) 
algorithm

■ Generalized Linear Model algorithm for regression and classification functions

■ Oracle-proprietary clustering algorithm, Orthogonal Partitioning Clustering 
(O-CLuster)

■ Oracle-proprietary classification algorithm, Adaptive Bayes Network (ABN) 
(deprecated)

■ Automated and embedded data transformations

■ Predictive analytics tasks

An overview of the Oracle extensions higher-level Java packages is provided in 
Table 2–5. 

Principal Objects in the Oracle Data Mining Java API
In JDM, named objects are objects that can be saved using the save method in the 
Connection. All the named objects are inherited from the 
javax.datamining.MiningObject interface. You can choose to persist the named 
objects either permanently (persistent objects) or only for the lifetime of the 
Connection object (transient objects). 

Table 2–6 lists the JDM named objects supported by Oracle Data Mining. 

See Also: Oracle Data Mining Java API Reference (javadoc).

Table 2–5 Oracle Extensions Higher-Level Packages

Package Description

oracle.dmt.jdm.featureextraction Defines the objects related to the feature extraction function. Feature 
extraction supports the scoring operation.

oracle.dmt.jdm.algorithm.nmf Defines the objects related to the Non-negative Matrix Factorization (NMF) 
algorithm.

oracle.dmt.jdm.algorithm.glm

oracle.dmt.jdm.modeldetail.glm

Defines the objects related to the Generalized Linear Model (GLM) 
algorithm.

oracle.dmt.jdm.algorithm.ocluster Defines the objects related to the Orthogonal Clustering (O-Cluster) 
algorithm.

oracle.dmt.jdm.algorithm.abn Defines the objects related to the Adaptive Bayes Network (ABN) algorithm 
(deprecated).

oracle.dmt.jdm.transform Defines the objects related to the transformations.

Table 2–6 JDM Named Objects Supported by Oracle Data Mining

Persistent Objects Transient Objects Unsupported Objects

Model Apply Settings Logical Data

Build Settings Physical Dataset Taxonomy
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Physical Data Set
Physical data sets refer to the data to be used as input to data mining operations. 
PhysicalDataSet objects reference specific data identified by a URI. Oracle Data Mining 
supports a table or view in the same database as a valid physical dataset URI. Syntax 
of the physical dataset URI is as follows:

Data URI Syntax:

[schemaName.] tableName/viewName

The PhysicalDataSet object can support multiple data representations. Oracle Data 
Mining supports two types of data representation: single-record case and wide data. 
(See Chapter 3 for details.) The Oracle Data Mining implementation requires users to 
specify the case ID column in the physical dataset.

A PhysicalDataSet object is a transient object in the Oracle Data Mining Java API. It is 
stored in the Connection as an in-memory object.

Build Settings
A BuildSettings object captures the high-level specification input for building a model. 
The API specifies mining functions: classification, regression, attribute importance, 
association, clustering, and feature extraction.

Build settings allow a user to specify the type of result desired without having to 
specify a particular algorithm. Although a build settings object allows for the 
specification of an algorithm and its settings, if the algorithm settings are omitted, the 
DME selects an algorithm based on the build settings and possibly characteristics of 
the data.

Build settings may also be validated for correct parameters using the verify method.

A BuildSettings object is persistent; it is stored as a table with a user-specified name in 
the user's schema. This settings table is interoperable with the PL/SQL API. Oracle 
recommends that you not modify the build settings table manually.

Task
The Execute method in the Connection object is used to start an execution of a mining 
task. Typically, mining operations are done using tables with millions of records, so the 
execution of operations such as a model build can take a long time. 

JDM supports asynchronous execution of mining tasks using DBMS_SCHEDULER in the 
database. Each mining task is stored as a DBMS_SCHEDULER job object in the user's 
schema. When the user saves the task object, it creates a job object and sets the object to 
be in the DISABLED state. When the user executes a task, it enables the job to start 
execution. 

To monitor tasks that are executed asynchronously, the Execute method returns a 
javax.datamining.ExecutionHandle object. It provides methods such as 
waitForCompletion and getStatus to retrieve the status details of the task. 

Task

Cost Matrix

Test Metrics

Transformation sequence

Table 2–6 (Cont.) JDM Named Objects Supported by Oracle Data Mining

Persistent Objects Transient Objects Unsupported Objects
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Model
A Model object is the result of applying an algorithm to data as specified in a 
BuildSettings object. 

Models can be used in several operations. They can be:

■ Inspected, for example to examine the rules produced from a decision tree or 
association

■ Tested for accuracy

■ Applied to data for scoring

■ Exported to an external representation such as native format or PMML

■ Imported for use in the DME

When a model is applied to data, it is submitted to the DME for interpretation. A 
Model object references its BuildSettings object as well as the Task that created it. as. 

Test Metrics
A TestMetrics object is the result of testing a supervised model with test data. Based on 
the type of mining function, different test metrics are computed. For classification 
models, accuracy, confusion-matrix, lift, and receiver-operating characteristic can be 
computed to access the model. Similarly for regression models, R-squared and RMS 
errors can be computed. 

Apply Settings
An ApplySettings object allows users to tailor the results of an apply task. It contains a 
set of ordered items. Output can consist of:

■ Data (key attributes) to be passed through to the output from the input dataset.

■ Values computed from the apply itself: score, probability, and in the case of 
decision trees, rule identifiers.

■ Multi-class categories for its associated probabilities. For example, in a 
classification model with target favoriteColor, users could select the specific colors 
to receive the probability that a given color is favorite.

Each mining function class defines a method to construct a default apply settings 
object. This simplifies the programmer's effort if only standard output is desired. For 
example, typical output for a classification apply would include the top prediction and 
its probability.

Transformation Sequence
A TransformationSequence object represents the sequence of transformations that are 
to be performed as part of a mining operation. For example, a Support Vector Machine 
model build involves outlier handling and normalization transformations. In addition 
to this, there can be new derived attribute creation and business transformations, and 
so on. Typically these transformations are reused for other model builds and hence 
applications can save the transformation sequence as a named object in the API.

Transformation sequences can be used either to perform transformations as a separate 
task or embed them to the modeling process by specifying it as one of the input objects 
for model building. 

See Also: Chapter 7 for more details about the Java API
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3 Creating the Case Table

This chapter explains how data is interpreted by Oracle Data Mining. It describes the 
requirements for a data mining case table, and it explains the notion of data attributes 
and model attributes. Data transformations are discussed in Oracle Data Mining 
Concepts.

This chapter contains the following sections:

■ Requirements

■ About Attributes

■ Nested Data

■ Missing Data

Requirements
The data that you wish to mine must be defined within a single table or view. The 
information for each record must be stored in a separate row. The data records are 
commonly called cases. Each case can be identified by a unique case ID. The table or 
view itself is referred to as a case table. 

The CUSTOMERS table in the SH schema is an example of a table that could be used for 
mining. All the information for each customer is contained in a single row. The case ID 
is the CUST_ID column. The rows listed in Example 3–1 are selected from 
SH.CUSTOMERS.

Example 3–1 Sample Case Table

SQL> select cust_id, cust_gender, cust_year_of_birth, 
           cust_main_phone_number from sh.customers where cust_id < 11;

CUST_ID CUST_GENDER CUST_YEAR_OF_BIRTH CUST_MAIN_PHONE_NUMBER
------- ----------- ---- ------------- -------------------------
1        M               1946          127-379-8954
2        F               1957          680-327-1419
3        M               1939          115-509-3391
4        M               1934          577-104-2792
5        M               1969          563-667-7731
6        F               1925          682-732-7260
7        F               1986          648-272-6181
8        F               1964          234-693-8728
9        F               1936          697-702-2618
10       F               1947          601-207-4099
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Column Data Types
The columns of the case table hold the attributes that describe each case. In 
Example 3–1, the attributes are: CUST_GENDER, CUST_YEAR_OF_BIRTH, and CUST_MAIN_
PHONE_NUMBER. The attributes are the predictors in a supervised model and the 
descriptors in an unsupervised model. The case ID, CUST_ID, can be viewed as a 
special attribute; it is not a predictor or a descriptor.

Oracle Data Mining accepts the following column data types:

VARCHAR2, CHAR 
NUMBER, FLOAT
DM_NESTED_CATEGORICALS
DM_NESTED_NUMERICALS

See Oracle Data Mining Concepts for information about converting the data type if 
necessary.

The nested types are described in "Nested Data" on page 3-7. The case ID column 
cannot have a nested type.

Data Sets for Data Mining
You need two case tables to build a classification or regression model. One set of rows 
is used for building (training) the model, another set of rows is used for testing the 
model. It is often convenient to derive the build data and test data from the same data 
set. For example, you might select 60% of the rows for building the model and 40% for 
testing the model.

Models that implement other mining functions, such as attribute importance, 
clustering, association, or feature extraction, do not use separate test data.

Most data mining models can be applied to separate data. The data to which you 
apply the model is called the apply data or scoring data. Oracle Data Mining supports 
the scoring operation for classification, regression, anomaly detection, clustering, and 
feature extraction.

The scoring process matches column names in the scoring data with the names of the 
columns that were used to build the model. The scoring process does not require all 
the columns to be present in the scoring data. If the data types do not match, Oracle 
Data Mining attempts to perform type coercion. For example, if a column called 
PRODUCT_RATING is VARCHAR2 in the build data but NUMBER in the scoring data, Oracle 
Data Mining will effectively apply a TO_CHAR() function to convert it.

The column in the test or scoring data must undergo the same transformations as the 
corresponding column in the build data. For example, if the AGE column in the build 
data was transformed from numbers to the values CHILD, ADULT, and SENIOR, then the 
AGE column in the scoring data must undergo the same transformation so that the 
model can properly evaluate it. 

Note: Oracle Data Mining requires single-record case data for all 
types of models except association models, which can be built on 
native transactional data. See "Market Basket Data" on page 3-11.
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About Attributes
Attributes are the items of data used in data mining. In predictive models, attributes 
are the predictors that affect a given outcome. In descriptive models, attributes are the 
items of information being analyzed for natural groupings or associations. A table of 
employee data might contain attributes such as job title, date of hire, salary, age, 
gender, and so on.

Data Attributes and Model Attributes
Data attributes are columns in the data sets used to build, test, or score a model. 
Model attributes are the data representations used internally by the model. 

Data attributes and model attributes can be the same. For example a column called 
SIZE, with values S, M, and L, might be an attribute used by an algorithm to build a 
model. Internally, the model attribute SIZE would most likely be the same as the data 
attribute from which it was derived. 

On the other hand, a nested column SALES_PROD, containing the sales figures for a 
group of products, would not correspond to a model attribute. The data attribute 
would be SALES_PROD, but each product with its corresponding sales figure (each row 
in the nested column) would be a model attribute.

Transformations also cause a discrepancy between data attributes and model 
attributes. For example, a transformation could apply a calculation to two data 
attributes and store the result in a new attribute. The new attribute would be a model 
attribute that has no corresponding data attribute. Other transformations such as 
binning, normalization, and outlier treatment, cause the model's representation of an 
attribute to be different from the data attribute in the case table.

Target Attribute
The target of a supervised model is a special kind of attribute. The target column in the 
build data contains the historical values used to build (train) the model. The target 
column in the test data contains the historical values to which the predictions are 
compared. The target column in the scoring data holds the results when the model is 
applied.

Note: Oracle Data Mining can embed user-specified transformation 
instructions in the model and reapply them whenever the model is 
applied. When the transformation instructions are embedded in the 
model, you do not need to specify them for the test or scoring data 
sets.

Oracle Data Mining also supports Automatic Data Preparation 
(ADP). When ADP is enabled, the transformations required by the 
algorithm are performed automatically and embedded in the model 
along with any user-specified transformations. Mining models that 
contain embedded transformations are known as supermodels. 

Automatic and embedded data transformations are discussed in 
Oracle Data Mining Concepts.

See Also:

■ "Nested Data" on page 3-7

■ Oracle Data Mining Concepts for information on transformations



About Attributes

3-4 Oracle Data Mining Application Developer's Guide

Clustering, feature extraction, association, and anomaly detection models do not use a 
target. 

You can query the *_MINING_MODEL_ATTRIBUTES view to find the target for a given 
model, as shown in Example 3–2.

Numericals and Categoricals
Model attributes are either numerical or categorical. Data attributes, which are 
columns in a case table, have Oracle data types. 

Oracle Data Mining interprets NUMBER, FLOAT, and DM_NESTED_NUMERICALS as 
numerical, and CHAR, VARCHAR2, and DM_NESTED_CATEGORICALS as categorical. There is 
one exception: If the target of a classification model is NUMBER or FLOAT, it will be 
interpreted as categorical.

Numerical attributes can theoretically have an infinite number of values. The values 
have an implicit order, and the differences between them are also ordered. 

Categorical attributes have values that belong to a finite number of discrete categories 
or classes. There is no implicit order associated with the values. Some categoricals are 
binary: They have only two possible values, such as yes or no, or male or female. The 
term multi-class is used to describe models when the categorical target has more than 
two values. For example, a target of clothing sizes could have the values small, 
medium, or large.

The target of a classification model is categorical. The target of a regression model is 
numerical. The target of an attribute importance model is either categorical or 
numerical.

Model Signature
The model signature is the set of data attributes used to build a model. Some or all of 
the attributes in the signature should be present for scoring. If some columns are not 
present, they are disregarded. If columns with the same names but different data types 
are present, the model attempts to convert the data type.

The model signature does not necessarily include all the columns in the build data. 
Algorithm-specific criteria may cause the model to ignore certain columns. Other 
columns may be eliminated by transformations. Only the data attributes actually used 
to build the model are included in the signature.

The target and case ID columns are not included in the signature.

ALL_MINING_MODEL_ATTRIBUTES
The columns in the model signature, plus the target (if the model is supervised), are 
listed in the data dictionary view, ALL/USER/DBA_MINING_MODEL_ATTRIBUTES. When 
used with the ALL prefix, this view returns the signature and target for all mining 
models accessible to the current user. When used with the USER prefix, it returns the 
model signature and target for all the mining models in the user's schema. The DBA 
prefix is only available to DBAs. 

The columns in the ALL_MINING_MODEL_ATTRIBUTES view are described as follows. 
Details are in Table 3–1.

SQL> describe all_mining_model_attributes
 Name                          Null?    Type
 ----------------------------------------------------------
 OWNER                         NOT NULL VARCHAR2(30)
 MODEL_NAME                    NOT NULL VARCHAR2(30)



About Attributes

Creating the Case Table 3-5

 ATTRIBUTE_NAME                NOT NULL VARCHAR2(30)
 ATTRIBUTE_TYPE                         VARCHAR2(11)
 DATA_TYPE                              VARCHAR2(12)
 DATA_LENGTH                            NUMBER
 DATA_PRECISION                         NUMBER
 DATA_SCALE                             NUMBER
 USAGE_TYPE                             VARCHAR2(8)
 TARGET                                 VARCHAR2(3)

Table 3–1 ALL_MINING_MODEL_ATTRIBUTES

Column Description

OWNER Owner of the mining model.

MODEL_NAME Name of the mining model.

ATTRIBUTE_NAME Name of the data attribute (column).

ATTRIBUTE_TYPE Type of the model attribute derived by the model from the data 
attribute. The attribute type can be either numerical or categorical. 

This information is only meaningful if there is a one-to-one mapping 
between the data attribute and the model attribute. If the data attribute 
has undergone transformations that change the way it is used by the 
model, then the ATTRIBUTE_TYPE may not be relevant. 

DATA_TYPE The Oracle data type of the data attribute (column):

NUMBER
FLOAT
CHAR
VARCHAR2
NESTED TABLE

If the value is NESTED TABLE, the data type is either:

DM_NESTED_NUMERICALS
or
DM_NESTED_CATEGORICALS

If the data type is NESTED TABLE, you can determine whether it is DM_
NESTED_NUMERICALS or DM_NESTED_CATEGORICALS from the ATTRIBUTE_
TYPE column. 

See "Nested Data" on page 3-7 for details.

DATA_LENGTH Length of the data type

DATA_PRECISION Precision of a fixed point number, which is the total number of 
significant decimal digits, is represented as p in the data type NUMBER 
(p,s).

DATA_SCALE Scale of a fixed point number. Scale, which is the number of digits from 
the decimal to the least significant digit, is represented as s in the data 
type NUMBER (p,s).

USAGE_TYPE Indicates that the attribute was used to construct the model. Some 
attributes may be eliminated by transformations or algorithmic 
processing. The *_MINING_MODEL_ATTRIBUTES view only lists the data 
attributes used by the model (model signature), therefore the value of 
USAGE_TYPE is always ACTIVE.

TARGET Whether or not the attribute is a target. The value can be either YES (the 
attribute is a target) or NO (the attribute is not a target).

If the attribute is a target, and it has undergone transformations for 
manipulation by the algorithm, the description in ALL_MINING_MODEL_
ATTRIBUTES reflects the target attribute's characteristics after reverse 
transformations have been applied.
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The query in Example 3–2 returns information about the data attributes of the model 
T_SVM_CLAS_SAMPLE, an SVM model generated by one of the Data Mining sample 
programs. The query returns the name and data type of each of the data attributes in 
the model signature, whether the attribute is used as a numerical or as a categorical, 
and whether or not the attribute is a target.

Example 3–2 ALL_MINING_MODEL_ATTRIBUTES

SQL> select model_name, attribute_name, attribute_type, data_type, target
             from user_mining_model_attributes 
             where model_name = 'T_SVM_CLAS_SAMPLE';
 
MODEL_NAME          ATTRIBUTE_NAME          ATTRIBUTE_TYPE  DATA_TYPE     TARGET
------------------- ---------------------   --------------- -----------   ------
T_SVM_CLAS_SAMPLE   COMMENTS                NUMERICAL       NESTED TABLE  NO
T_SVM_CLAS_SAMPLE   AGE                     NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   CUST_MARITAL_STATUS     CATEGORICAL     VARCHAR2      NO
T_SVM_CLAS_SAMPLE   COUNTRY_NAME            CATEGORICAL     VARCHAR2      NO
T_SVM_CLAS_SAMPLE   CUST_INCOME_LEVEL       CATEGORICAL     VARCHAR2      NO
T_SVM_CLAS_SAMPLE   EDUCATION               CATEGORICAL     VARCHAR2      NO
T_SVM_CLAS_SAMPLE   OCCUPATION              CATEGORICAL     VARCHAR2      NO
T_SVM_CLAS_SAMPLE   HOUSEHOLD_SIZE          CATEGORICAL     VARCHAR2      NO
T_SVM_CLAS_SAMPLE   YRS_RESIDENCE           NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   BULK_PACK_DISKETTES     NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   FLAT_PANEL_MONITOR      NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   HOME_THEATER_PACKAGE    NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   BOOKKEEPING_APPLICATION NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   PRINTER_SUPPLIES        NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   Y_BOX_GAMES             NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   OS_DOC_SET_KANJI        NUMERICAL       NUMBER        NO
T_SVM_CLAS_SAMPLE   CUST_GENDER             CATEGORICAL     CHAR          NO
T_SVM_CLAS_SAMPLE   AFFINITY_CARD           NUMERICAL       NUMBER        YES

Scoping of Model Attribute Name
The model attribute name consists of two parts: a column name, and a subcolumn 
name.

column_name[.subcolumn_name]

The column_name component is the name of the data attribute. It is present in all model 
attribute names. Nested attributes also have a subcolumn_name component as shown in 
Example 3–3.

Example 3–3 Model Attributes Derived from a Nested Column

The nested column SALESPROD has three rows.

SALESPROD(ATTRIBUTE_NAME, VALUE)
--------------------------------
((PROD1, 300),
 (PROD2, 245),
 (PROD3, 679))

The name of the data attribute is SALESPROD. Its associated model attributes are: 

SALESPROD.PROD1
SALESPROD.PROD2
SALESPROD.PROD3
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Model Details
Model details reveal information about model attributes and their treatment by the 
algorithm. There is a separate GET_MODEL_DETAILS routine for each algorithm.

Transformation and reverse transformation expressions are associated with model 
attributes. The transformations are applied to the model for algorithmic processing. 
The reverse transformations are applied for model details. The information returned to 
the user by GET_MODEL_DETAILS is expressed in the form of the original data attributes, 
or as close to it as possible.

Reverse transformations are also applied to the target when a supervised model is 
scored. Reverse transformations support model transparency. Transparency is 
discussed in Oracle Data Mining Concepts.

Example 3–4 shows the definition of the GET_MODEL_DETAILS function for an Attribute 
Importance model. The PIPELINED keyword instructs Oracle Database to return the 
rows as single values instead of returning all the rows as a single value.

Example 3–4 Model Details for an Attribute Importance Model

The syntax of the GET_MODEL_DETAILS function for Attribute Importance models is 
shown as follows.

DBMS_DATA_MINING.GET_MODEL_DETAILS_AI (
             model_name             VARCHAR2)
RETURN DM_RANKED_ATTRIBUTES PIPELINED;

The function returns DM_RANKED_ATTRIBUTES, a virtual table. The columns are the 
model details. There is one row for each model attribute in the specified model. The 
columns are described as follows.

(attribute_name  VARCHAR2(4000),
 attribute_subname VARCHAR2(4000),
 importance_value NUMBER,
 rank NUMBER(38))

Nested Data
Oracle Data Mining requires a case table in single-record case format, with each record 
in a separate row. What if some or all of your data is in multi-record case format, with 
each record in several rows? What if you want one attribute to represent a series or 
collection of values, such as a student's test scores or the products purchased by a 
customer?

This kind of one-to-many relationship is usually implemented as a join between tables. 
For example, you might join your customer table to a sales table and thus associate a 
list of products purchased with each customer. 

Oracle Data Mining supports dimensioned data through nested columns. To include 
dimensioned data in your case table, create a view and cast the joined data to one of 
the Data Mining nested table types. Each row in the nested column consists of an 
attribute name/value pair. Oracle Data Mining internally processes each nested row as 
a separate attribute. 

The algorithms that support nested data are listed in Table 3–2

See Also: Sample code for converting to a nested table in "Example: 
Creating a Nested Column for Mining" on page 3-10.
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Nested Object Types
Oracle Database supports user-defined data types that make it possible to model 
real-world entities as objects in the database. Collection types are object data types for 
modeling multi-valued attributes. Nested tables are collection types. Nested tables can 
be used anywhere that other data types can be used. You can learn more about 
collection types in Oracle Database Object-Relational Developer's Guide.

Oracle Data Mining supports two nested object types: one for numerical attributes, the 
other for categorical attributes.

DM_NESTED_NUMERICALS
The DM_NESTED_NUMERICALS object type is a nested table of numerical attributes. Each 
row is a single DM_NESTED_NUMERICAL.

The nested numerical attributes (rows) are described as follows.

SQL> describe dm_nested_numerical
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ATTRIBUTE_NAME                                     VARCHAR2(4000)
 VALUE                                              NUMBER
 
The collection of numerical attributes (table) is described as follows. 

SQL> describe dm_nested_numericals
 DM_NESTED_NUMERICALS TABLE OF SYS.DM_NESTED_NUMERICAL
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ATTRIBUTE_NAME                                     VARCHAR2(4000)
 VALUE                                              NUMBER

DM_NESTED_CATEGORICALS
The DM_NESTED_CATEGORICALS object type is a nested table of categorical attributes. 
Each row is a single DM_NESTED_CATEGORICAL.

The nested categorical attributes (rows) are described as follows.

SQL> describe dm_nested_categorical
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ATTRIBUTE_NAME                                     VARCHAR2(4000)
 VALUE                                              VARCHAR2(4000)
 
The collection of categorical attributes (table) is described as follows.

Table 3–2 Oracle Data Mining Algorithms that Support Nested Data

Algorithm Mining Function

Apriori association rules

GLM classification and regression

k-Means clustering

MDL attribute importance

Naive Bayes classification

NMF feature extraction

SVM classification, regression, and anomaly detection
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SQL> describe dm_nested_categoricals
 DM_NESTED_CATEGORICALS TABLE OF SYS.DM_NESTED_CATEGORICAL
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 ATTRIBUTE_NAME                                     VARCHAR2(4000)
 VALUE                                              VARCHAR2(4000)

Example: Transforming Transactional Data for Mining
Example 3–5 shows data from a view of a sales table. It includes sales for three of the 
many products sold in four regions. This data is not suitable for mining at the product 
level because sales for each case (product), is stored in several rows.

Example 3–5 Product Sales per Region in Multi-Record Case Format

PRODUCT   REGION         SALES
-------   --------   ----------
Prod1       NE           556432
Prod2       NE           670155
Prod3       NE             3111
.
.
Prod1       NW            90887
Prod2       NW           100999
Prod3       NW           750437
.
.
Prod1       SE            82153
Prod2       SE            57322
Prod3       SE            28938
.
.
Prod1       SW          3297551
Prod2       SW          4972019
Prod3       SW           884923
.
.

Example 3–6 shows how this data could be transformed for mining. The case ID 
column would be PRODUCT. SALES_PER_REGION, a nested column of type DM_NESTED_
NUMERICALS, would be a data attribute. This table is suitable for mining, because the 
information for each case is stored in a single row.

Example 3–6 Product Sales per Region in Single-Record Case Format

PRODUCT      SALES_PER_REGION
          (ATTRIBUTE_NAME, VALUE)
------    --------------------------
Prod1      ('NE' ,     556432)
           ('NW' ,      90887)
           ('SE' ,      82153)
           ('SW' ,    3297551)
Prod2      ('NE' ,     670155)
           ('NW' ,     100999)
           ('SE' ,      57322)
           ('SW' ,    4972019)
Prod3      ('NE' ,       3111)
           ('NW' ,     750437)
           ('SE' ,      28938)
           ('SW' ,     884923)
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.

.

Oracle Data Mining treats each nested row as a separate model attribute, as shown in 
Example 3–7. (Note that the presentation in this example is conceptual only. The data 
is not actually pivoted before being processed.) 

Example 3–7 Model Attributes Derived From SALES_PER_REGION

PRODUCT    SALES_PER_REGION.NE    SALES_PER_REGION.NW    SALES_PER_REGION.SE    SALES_PER_REGION.SW   
-------    ------------------    -------------------    ------------------    -------------------
Prod1                 556432                 90887                  82153                3297551
Prod2                 670155                100999                  57322                4972019
Prod3                   3111                 750437                 28938                 884923
.
.

Example: Creating a Nested Column for Mining
Example 3–8 shows how to define a nested column for data mining. This example uses 
transactional market basket data.

Example 3–8 Convert to a Nested Column

The view SALES_TRANS_CUST provides a list of transaction IDs to identify each market 
basket and a list of the products in each basket.

SQL> describe sales_trans_cust
 Name                                                  Null?    Type
 ----------------------------------------------------- -------- ----------------
 TRANS_ID                                              NOT NULL NUMBER
 PROD_NAME                                             NOT NULL VARCHAR2(50)
 QUANTITY                                                       NUMBER

The following SQL statement transforms this data to a column of type DM_NESTED_
NUMERICALS in a view called SALES_TRANS_CUST_NESTED. This view can be used as a 
case table for mining. 

SQL> CREATE VIEW sales_trans_cust_nested AS
             SELECT trans_id,
                     CAST(COLLECT(DM_NESTED_NUMERICAL(
                     prod_name, quantity))
                     AS DM_NESTED_NUMERICALS) custprods
                  FROM sales_trans_cust
             GROUP BY trans_id;

This query returns two rows from the transformed data.

SQL> select * from sales_trans_cust_nested 
               where trans_id < 101000
               and trans_id > 100997;
 
TRANS_ID  CUSTPRODS(ATTRIBUTE_NAME, VALUE)
-------  ------------------------------------------------
100998   DM_NESTED_NUMERICALS
          (DM_NESTED_NUMERICAL('O/S Documentation Set - English', 1)
100999   DM_NESTED_NUMERICALS
          (DM_NESTED_NUMERICAL('CD-RW, High Speed Pack of 5', 2),
           DM_NESTED_NUMERICAL('External 8X CD-ROM', 1), 
           DM_NESTED_NUMERICAL('SIMM- 16MB PCMCIAII card', 1))
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Market Basket Data
Market basket data identifies the items sold in a set of baskets or transactions. Oracle 
Data Mining provides the association mining function for market basket analysis. 

Association models use the Apriori algorithm to generate association rules that 
describe how items tend to be purchased in groups. For example, an association rule 
might assert with 65% confidence that 80% of the people who buy peanut butter also 
buy jelly.

Market basket data is usually transactional. In transactional data, a case is a 
transaction and the data for a transaction is stored in multiple rows. Oracle Data 
Mining association models can be built on transactional data or on single-record case 
data. The ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_VALUE_COLUMN_NAME settings 
specify whether or not the data for association rules is in transactional format.

The Apriori algorithm assumes that the data is transactional and that it has many 
missing values. Apriori interprets all missing values as sparse data, and it has its own 
native mechanisms for handling sparse data.

Missing Data
Oracle Data Mining distinguishes between sparse data and data that contains random 
missing values. The latter means that some attribute values are unknown. Sparse data, 
on the other hand, contains values that are assumed to be known, although they are 
not represented in the data. 

A typical example of sparse data is market basket data. Out of hundreds or thousands 
of available items, only a few are present in an individual case (the basket or 
transaction). All the item values are known, but they are not all included in the basket. 
Present values may have a quantity, while the items that are not represented are sparse 
(with a known quantity of zero).

How Oracle Data Mining Interprets Missing Data
Oracle Data Mining interprets missing data as follows:

■ Missing — Missing values in columns with a simple data type (not nested) are 
assumed to be missing at random.

■ Sparse — Missing values in nested columns indicate sparsity.

Note: Association models are the only type of model that can be 
built on native transactional data. For all other types of models, Oracle 
Data Mining requires that the data be presented in single-record case 
format 

See Also:

■ See Oracle Database PL/SQL Packages and Types Reference for 
information on the ODMS_ITEM_ID_COLUMN_NAME and ODMS_ITEM_
VALUE_COLUMN_NAME settings 

■ "Missing Data" on page 3-11.
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Examples: Missing Values or Sparse Data?
The examples in this section illustrate how Oracle Data Mining identifies data as either 
sparse or missing at random.

Sparsity in a Sales Table
A sales table contains point-of-sale data for a group of products, sold in several stores 
to different customers over a period of time. A particular customer will only have 
bought some of the products. Those products that a customer did not buy will not 
appear as rows in the sales table. 

If you were to figure out the amount of money a customer has spent for each product, 
the unpurchased products would have an inferred amount of zero. The value is not 
random or unknown; it is zero, even though no row appears in the table.

Note that the sales data is dimensioned (by product, stores, customers, and time) and 
would be represented as nested data for mining.

Since missing values in a nested column will always indicate sparsity, you should 
make sure that this interpretation is appropriate for the data that you wish to mine. 
For example, when trying to mine a multi-record case data set containing users' movie 
ratings of a large movie database, the missing ratings would be unknown (missing at 
random), but Oracle Data Mining would treat the data as sparse and infer a rating of 
zero for the missing value.

Missing Values in a Table of Customer Data
A table of customer data contains demographic data about customers. The case ID 
column is the customer ID. The attributes are age, education, profession, gender, 
house-hold size, and so on. Not all the data may be available for each customer. Any 
missing values are considered to be missing at random. For example, if the age of 
customer 1 and the profession of customer 2 are not present in the data, that 
information is simply unknown. It does not indicate sparsity.

Note that the customer data is not dimensioned. There is a one-to-one mapping 
between the case and each of its attributes. None of the attributes are nested.

How Oracle Data Mining Treats Missing Data
Missing value treatment depends on the algorithm and on the nature of the data 
(categorical or numerical, sparse or missing at random). Missing value treatment is 
summarized in Table 3–3.

Note: Oracle Data Mining performs the same missing value 
treatment whether or not Automatic Data Preparation is being used. 
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Attribute Transformation and Missing Data Treatment
If you want Oracle Data Mining to treat missing data as sparse instead of missing at 
random or missing at random instead of sparse, transform it before building the 
model. 

If you want missing values to be treated as sparse, but Oracle Data Mining would 
interpret them as missing at random, you can use a SQL function like NVL to replace 
the nulls with a value such as "NA". Oracle Data Mining will not perform missing 
value treatment if there is a specified value. See Oracle Database SQL Language Reference

If you want missing nested attributes to be treated as missing at random, you can 
transform the nested rows into physical attributes in separate columns — as long as 
the case table stays within the 1000 column limitation imposed by the Database. Fill in 
all of the possible attribute names, and specify them as null. 

Table 3–3 Missing Value Treatment by Algorithm

Missing Data SVM, NMF, k-Means, GLM NB, MDL, DT, OC Apriori

NUMERICAL 
missing at 
random

Oracle Data Mining replaces 
missing numerical values with 
the mean.

The algorithm handles missing values 
naturally as missing at random. 

The algorithm 
interprets all missing 
data as sparse.

CATEGORICAL 
missing at 
random

Oracle Data Mining replaces 
missing categorical values with 
the mode.

The algorithm handles missing values 
naturally as missing random.

The algorithm 
interprets all missing 
data as sparse.

NUMERICAL 
sparse

Oracle Data Mining replaces 
sparse numerical data with 
zeros.

DT and O-Cluster do not support 
nested data, and therefore do not 
support sparse data. NB and MDL 
replace sparse numerical data with 
zeros.

The algorithm 
handles sparse data.

CATEGORICAL 
sparse

Oracle Data Mining replaces 
sparse categorical data with 
zero vectors.

DT and O-Cluster do not support 
nested data, and therefore do not 
support sparse data. NB and MDL 
replace sparse categorical data with 
the special value DM$SPARSE.

The algorithm 
handles sparse data.
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4 Preparing Text for Mining

Oracle Data Mining supports the mining of data sets that have one or more text 
columns. These columns must undergo a special preprocessing step whereby text 
tokens known as terms are extracted and stored in a nested column. The transformed 
text can then be used as any other attribute in the building, testing, and scoring of 
models. Any algorithm that supports nested data can be used for text mining. (See 
Table 3–2 in Chapter 3.) 

This chapter explains how to use PL/SQL to prepare a column of text for mining. 

This chapter contains the following sections.

■ Oracle Text Routines for Term Extraction

■ Term Extraction in the Sample Programs

■ From Unstructured Data to Structured Data

■ Steps in the Term Extraction Process

■ Example: Transforming a Text Column

Oracle Text Routines for Term Extraction
Oracle Data Mining uses specialized Oracle Text routines to preprocess text data. 
Oracle Text is a technology within the database for building text querying and 
classification applications. 

Oracle Text provides the following facilities for the Oracle Data Mining term extraction 
process:

■ SVM_CLASSIFIER, defined in the CTX_DLL Oracle Text PL/SQL package, specifies an 
index preference for Oracle Data Mining term extraction.

■ The CTXSYS.DRVODM Oracle Text PL/SQL package defines the table functions, 
FEATURE_PREP and FEATURE_EXPLAIN, which generate intermediate and final tables 
of text terms for Oracle Data Mining.

Note: Oracle Data Mining includes sample programs that illustrate 
text transformation and text mining using the PL/SQL API. Refer to 
Oracle Data Mining Administrator's Guide for information about the 
Oracle Data Mining sample programs.

See Also: Oracle Data Mining Concepts for information about text 
mining
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In PL/SQL, the term extraction process requires the use of these Oracle Text facilities. 
(See "Using Text Transformation" on page 7-25.)

Term Extraction in the Sample Programs
A good place to start in learning the term extraction process is with the sample 
programs. The following sample programs contain term extraction code for text 
mining:

■ dmsh.sql — Prepares the build, test, and scoring data for the sample programs, 
including the text mining programs. dmsh.sql creates views for data mining and 
tables and indexes for text mining.

■ dmtxtfe.sql — Using the indexed text column created by dmsh.sql, creates a 
nested column suitable for text mining.

The dmtxtfe.sql program is a sample term extractor. It contains extensive 
comments that explain the code in a step-by-step fashion. You can expand this 
program into a complete term extraction solution by adding index creation and the 
preparation of test and scoring data (as in dmsh.sql).

Two sample PL/SQL programs use the data prepared by dmsh.sql to mine text.

■ dmtxtnmf.sql creates and applies a model that uses Non-Negative Matrix 
Factorization.

■ dmtxtsvm.sql creates and applies a model that uses SVM classification.

Both these programs mine a table of customer data that includes a nested column of 
text data called COMMENTS. The COMMENTS column has been pre-processed by dmsh.sql. 
The models created by these programs are referenced in the following example from a 
Linux system.

See Also: Oracle Text Application Developer's Guide and Oracle Text 
Reference for information on Oracle Text

Note: The Oracle Text facilities for Oracle Data Mining are 
documented in this chapter. They are not documented in the Oracle 
Text manuals.

Note on Terminology: Text terms are also known as features. In text 
mining, a feature is a word or group of words extracted from a text 
document. Features (terms) are the fundamental unit of text that can 
be manipulated and analyzed. 

The feature extraction mining function (NMF algorithm in Oracle 
Data Mining) and text mining transformation both perform a kind of 
feature extraction. 

■ A feature extraction model creates features that represent 
fundamental qualities of multiple attributes. The model operates 
on the features instead of the original attributes. 

■ Text transformation changes a text document into a collection of 
features, each one representing a fundamental characteristic of the 
document. The model operates on the text features instead of the 
original document.
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-- Run the programs to create the models
SQL> @ $ORACLE_HOME/rdbms/demo/dmtxtnmf.sql
SQL> @ $ORACLE_HOME/rdbms/demo/dmtxtsvm.sql
-- List the models created by the programs
SQL> SELECT model_name, mining_function, algorithm FROM user_mining_models;
 
MODEL_NAME                MINING_FUNCTION              ALGORITHM
------------------------  ---------------------------  ------------------------
T_SVM_CLAS_SAMPLE         CLASSIFICATION               SUPPORT_VECTOR_MACHINES
T_NMF_SAMPLE              FEATURE_EXTRACTION           NONNEGATIVE_MATRIX_FACTOR

From Unstructured Data to Structured Data
The pre-processing steps for text mining create nested table columns of type DM_
NESTED_NUMERICALS from columns of type VARCHAR2 or CLOB. Each row of the nested 
table specifies an attribute name and a value. The DM_NESTED_NUMERICALS type defines 
the following columns.

attribute_name     VARCHAR2(4000)
value               NUMBER)

The term extraction process treats the text in each row of the original table as a 
separate document. Each document is transformed to a set of terms that have a 
numeric value and a text label. Within the nested table column, the attribute_name 
column holds the text and the value column holds the numeric value of the term, 
which is derived using the term frequency in the document and in the document 
collection (other rows).

For example, the following query returns various attributes of customer 102998, 
including a text column of comments. The text column has not been transformed.

SQL> select cust_id, cust_gender, cust_income_level, affinity_card, comments
             from mining_build_text
             where cust_id = 102998;
 
CUST_ID C  CUST_INCOME_LEVEL     AFFINITY_CARD COMMENTS
------- -- --------------------  ------------- --------------------------------
102998  M  J: 190,000 - 249,999  1             I wanted to write you to let you
                                               know that I've purchased several
                                               items at your store recently and
                                               have been very satisfied with my
                                               purchases. Keep up the good work.
  
The following query returns the same attributes of customer 102998, but the text in the 
comments column has been transformed. The query extracts the ATTRIBUTE_NAME and 
VALUE columns from the nested table that holds the transformed text.

SQL> select b.cust_id, b.cust_gender, b.cust_income_level, b.affinity_card, n.*
             from mining_build_nested_text b,
                  table(b.comments) n
             where b.cust_id = 102998
             order by n.attribute_name;
 
CUST_ID  C  CUST_INCOME_LEVEL    AFFINITY_CARD  ATTRIBUTE_NAME  VALUE
-------  -- -------------------  -------------  --------------  --------

See Also: Oracle Data Mining Administrator's Guide. This manual 
provides instructions for obtaining and running the sample programs. 
It includes information about the build, training, and scoring data 
used by these programs.
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102998   M  J: 190,000 - 249,999  1              GOOD            .26894
102998   M  J: 190,000 - 249,999  1              ITEMS            158062
102998   M  J: 190,000 - 249,999  1              KEEP             238765
102998   M  J: 190,000 - 249,999  1              KNOW              .2006
102998   M  J: 190,000 - 249,999  1              LET              299856
102998   M  J: 190,000 - 249,999  1              PURCHASED        142743
102998   M  J: 190,000 - 249,999  1              PURCHASES        173146
102998   M  J: 190,000 - 249,999  1              RECENTLY        .195223
102998   M  J: 190,000 - 249,999  1              SATISFIED       .355851
102998   M  J: 190,000 - 249,999  1              SEVERAL         .355851
102998   M  J: 190,000 - 249,999  1              STORE          .0712537
102998   M  J: 190,000 - 249,999  1              UP              .159838
102998   M  J: 190,000 - 249,999  1              WANTED          .355851
102998   M  J: 190,000 - 249,999  1              WORK            .299856
102998   M  J: 190,000 - 249,999  1              WRITE           .355851

The ATTRIBUTE_NAME column holds an item of text from the original comments 
column. The VALUE column holds the term value. Note that not all words from the 
original comments column are extracted as terms. For example, the articles the and to 
are not included.

Steps in the Term Extraction Process
The steps in the term extraction process are summarized in this section. Further details 
and specific syntax requirements are explained later in this chapter.

Transform a Text Column in the Build Table
First transform the text in the build data. During this process you will generate the text 
term definitions, which you will reuse for the test and apply data. Perform the 
following steps:

1. Create an index on the text column in the build table.

2. Create an SVM_CLASSIFIER preference for the index.

3. Define a table to hold the categories specified by the SVM_CLASSIFIER index.

4. Use the FEATURE_PREP table function to create the term definitions and populate an 
intermediate terms table.

5. Use the FEATURE_EXPLAIN table function to populate the final terms table.

6. Replicate the columns of the original build table (using a view or another table), 
replacing the text column with a nested table column. Load the terms from the 
final terms table into the nested table column.

Transform a Text Column in the Test and Apply Tables
The test and apply data must undergo the same pre-processing as the build data. To 
transform the test and apply data, you will reuse the term definitions generated for the 
build data. Perform the following steps:

1. Create an index on the text column in the test or apply table.

2. Use the FEATURE_PREP table function to populate an intermediate terms table. Use 
the term definitions previously generated for the build data.

3. Use the FEATURE_EXPLAIN table function to populate the final terms table.
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4. Replicate the columns of the original test or apply table, replacing the text column 
with a nested table column. Load the terms from the final terms table into the 
nested table column.

Create the Index and Index Preference
Oracle Text processing requires a text index. Oracle Text supports several types of 
indexes for querying, cataloging, and classifying text documents. The Oracle Data 
Mining term extraction process requires a CONTEXT index for text querying. 

You must create an index for each text column to be transformed. Use the following 
syntax to create the index.

SQL>CREATE INDEX index_name ON table_name(column_name)
                   INDEXTYPE IS ctxsys.context PARAMETERS ('nopopulate');

Oracle Text supports index preferences for overriding the default characteristics of an 
index. The CREATE_PREFERENCE procedure in the Oracle Text package CTX_DDL creates a 
preference with the name and type that you specify. The SVM_CLASSIFIER preference 
type defines the characteristics of an index for Oracle Data Mining. 

You must create an index preference when you prepare the build data. It will be reused 
when you prepare the test and apply data. Use the following syntax to create the index 
preference.

SQL>EXECUTE ctx_ddl.create_preference('preference_name', 'SVM_CLASSIFIER');

The SVM_CLASSIFIER index preference uses a predefined table with two numeric 
columns: ID and CAT. ID holds the case ID; CAT holds the category. The category table is 
used for internal processing. You must create the category table using the following 
syntax.

SQL>CREATE TABLE category_table_name(id NUMBER, cat NUMBER);

Create the Intermediate Terms Table
The FEATURE_PREP table function in the CTXSYS.DRVODM Oracle Text package extracts 
terms from a text column using an index preference of type SVM_CLASSIFIER. FEATURE_
PREP creates a table of term definitions from the build data and reuses these definitions 
for the test and apply data.

FEATURE_PREP returns an intermediate terms table.

FEATURE_PREP Calling Syntax
FEATURE_PREP is an over-loaded function that accepts two different sets of arguments. 
You will specify one set of arguments for the build data and another set for the test 
and apply data. 

--- syntax for build data ---
            CTXSYS.DRVODM.FEATURE_PREP (
                   text_index                IN   VARCHAR2,
                   case_id                   IN   VARCHAR2,

Note: This statement creates a basic CONTEXT index. You can further 
define the characteristics of the index by specifying additional 
arguments to the CREATE INDEX statement. Refer to Oracle Text 
Reference for details. 
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                   category_tbl              IN   VARCHAR2,
                   category_tbl_id_col       IN   VARCHAR2,
                   category_tbl_cat_col      IN   VARCHAR2,
                   feature_definition_tbl    IN   VARCHAR2,
                   index_preference          IN   VARCHAR2)
                RETURN DRVODM;

--- syntax for test/apply data ---
           CTXSYS.DRVODM.FEATURE_PREP (
                   text_index                IN   VARCHAR2,
                   case_id                   IN   VARCHAR2,
                   feature_definition_tbl    IN   VARCHAR2,
                RETURN DRVODM;

FEATURE_PREP Return Value
FEATURE_PREP returns the following columns. The SEQUENCE_ID column holds the case 
ID; the ATTRIBUTE_ID column holds the term ID.

Name                   NULL?   Type
---------------------- ------- ------
SEQUENCE_ID                    NUMBER
ATTRIBUTE_ID                   NUMBER
VALUE                          NUMBER

FEATURE_PREP Arguments
FEATURE_PREP accepts the arguments described in Table 4–1.

Table 4–1 FEATURE_PREP Table Function Arguments

Argument Name Data Type

text_index VARCHAR2 Name of the index on the text column in the build, 
test, or apply table.

case_ID VARCHAR2 Name of the case ID column in the build, test, or 
apply table.

category_tbl VARCHAR2 Name of the table used by the SVM_CLASSIFIER 
index preference. 

Specify this argument only for build data.

category_tbl_id_col VARCHAR2 Specify 'id'. This is the name of the ID column in 
the table used by the SVM_CLASSIFIER index 
preference.

Specify this argument only for build data.

category_tbl_cat_col VARCHAR2 Specify 'cat'. This is the name of the CAT column in 
the table used by the SVM_CLASSIFIER index 
preference.

Specify this argument only for build data.

feature_definition_tbl VARCHAR2 Name of the term definition table created by 
FEATURE_PREP. The columns of the term definition 
table are:

Name         Null?     Type
---------------------------------
CAT_ID                   NUMBER
TYPE                     NUMBER
RULE                     BLOB
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FEATURE_PREP Example
The following example creates an intermediate terms table called txt_term_out. The 
FEATURE_PREP table function extracts terms from a text column with an index called 
build_text_idx. The text column is in a build table with a case ID column called 
cust_id. The index preference txt_pref is applied to the index using the id and cat 
columns in the table cat_tbl. FEATURE_PREP creates a table of term definitions called 
txt_pref_terms.

CREATE TABLE txt_term_out AS
SELECT *
  FROM TABLE(ctxsys.drvodm.feature_prep (
               'build_text_idx',
               'cust_id',
               'cat_tbl',
               'id',
               'cat',
               'txt_pref_terms',
               'txt_pref'));

Create the Final Terms Table
The FEATURE_EXPLAIN table function in the CTXSYS.DRVODM Oracle Text package 
extracts the term values from the definitions created by FEATURE_PREP and appends the 
associated word to each value.

FEATURE_EXPLAIN returns the final terms table. 

FEATURE_EXPLAIN Calling Syntax
The calling syntax of FEATURE_EXPLAIN is described as follows. 

            CTXSYS.DRVODM.FEATURE_EXPLAIN (
                   feature_definition_tbl     IN   VARCHAR2,
                RETURN DRVODM;

FEATURE_EXPLAIN Return Value
FEATURE_EXPLAIN returns the following columns.

Name              Type
---------------    ---------------
text               VARCHAR2(160)
type               NUMBER(3)
ID                 NUMBER
score              NUMBER

FEATURE_EXPLAIN Arguments
FEATURE_EXPLAIN accepts a single argument: the terms definition table created by 
FEATURE_PREP.

index_preference VARCHAR2 Name of the SVM_CLASSIFIER index preference.

Specify this argument only for build data.

Table 4–1 (Cont.) FEATURE_PREP Table Function Arguments

Argument Name Data Type
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FEATURE_EXPLAIN Example
The following example creates a final terms table called txt_final_terms using the 
intermediate terms table txt_term_out. The FEATURE_EXPLAIN table function returns 
the terms specified in the terms definition table txt_pref_terms. 

SQL> create table txt_final_terms as
                   select A.sequence_id, B.text, A.value
                         FROM txt_term_out A,
                              TABLE(ctxsys.drvodm.feature_explain(
                                    'txt_pref_terms')) B
                         WHERE A.attribute_id = B.id;

Populate a Nested Table Column
Use the final terms table to populate a nested table column of type DM_NESTED_
NUMERICALS. 

The following example creates the table mining_build_nested_text. (Alternatively, 
you could create a view.) The table has a case ID column of customer IDs and three 
customer attribute columns: age, education, and occupation. It also includes a 
comments column of type DM_NESTED_NUMERICALS created from the terms table txt_
final_terms.

SQL> CREATE TABLE mining_build_nested_text
       NESTED TABLE comments store AS build_comments
      AS
    SELECT non_text.cust_id,
      non_text.age,
      non_text.education,
      non_text.occupation,
     txt.comments
     FROM
     mining_build_text non_text,
     ( SELECT features.sequence_id,
              cast(COLLECT(dm_nested_numerical(features.text,features.value))
                           as dm_nested_numericals)  comments
       FROM txt_final_terms features
       group by features.sequence_id) txt
     WHERE non_text.cust_id = txt.sequence_id(+);

Example: Transforming a Text Column
In the following example, a text column in MINING_BUILD_TEXT is transformed to a 
nested table column in MINING_BUILD_NESTED_TEXT. The same text column in MINING_
APPLY_TEXT is transformed to a nested table column in MINING_APPLY_NESTED_TEXT.

Both MINING_BUILD_TEXT and MINING_APPLY_TEXT have the following columns.

 Name                              Null?    Type
 --------------------------------- -------- ---------------------------
 CUST_ID                           NOT NULL NUMBER
 AGE                                        NUMBER
 EDUCATION                                  VARCHAR2(21)
 OCCUPATION                                 VARCHAR2(21)
 COMMENTS                                   VARCHAR2(4000)

The following statements create the indexes.

SQL> create index build_text_idx on mining_build_text (comments)
             indextype is ctxsys.context parameters ('nopopulate');
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SQL> create index apply_text_idx ON mining_apply_text (comments)
             indextype is ctxsys.context parameters ('nopopulate');

The following statements create the index preference and its table.

SQL> execute ctx_ddl.create_preference('idx_pref', 'SVM_CLASSIFIER');
SQL> create table idx_pref_cat (id number, cat number);

The following statement returns the intermediate terms in the table BUILD_TERMS_OUT. 
It also creates the table FEATURE_DEFS and populates it with the term definitions.

SQL>  create table build_terms_out as
              select * from
                     table (ctxsys.drvodm.feature_prep
                                  ('build_text_idx',
                                   'cust_id',
                                   'idx_pref_cat',
                                   'id',
                                   'cat',
                                   'feature_defs',
                                   'idx_pref'));

The following statement returns the final terms in the table BUILD_EXPLAIN_OUT. 

SQL> create table build_explain_out as
             select a.sequence_id,
                    b.text,
                    a.value
             from build_terms_out a,
             table (ctxsys.drvodm.feature_explain('feature_defs')) b
             where a.attribute_id = b.id;

The following statement creates the table MINING_BUILD_NESTED_TEXT. This table 
contains the non-text attributes from the original build table and a nested table of 
comments. This table can be used to build a model.

SQL> create table mining_build_nested_text
        nested table comments store as build_comments
          as select non_text.cust_id,
                    non_text.age,
                    non_text.education,
                    non_text.occupation,
                    txt.comments
              from mining_build_text non_text,
             (select features.sequence_id,
                cast(collect(dm_nested_numerical(features.text,features.value))
                as dm_nested_numericals)  comments
              from build_explain_out features
              group by features.sequence_id) txt
              where non_text.cust_id = txt.sequence_id(+);

The following statement creates the intermediate terms table for the comments column 
in the apply table, MINING_APPLY_TEXT. It uses the term definitions in the FEATURE_
DEFS table, which was created during the pre-processing of the comments column in 
MINING_BUILD_TEXT.

SQL>  create table apply_terms_out as
              select * from
                     table (ctxsys.drvodm.feature_prep
                                  ('apply_text_idx',
                                   'cust_id',
                                   'feature_defs'));
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The following statement creates the final terms table for apply. 

SQL> create table apply_explain_out as
             select a.sequence_id,
                    b.text,
                    a.value
             from apply_terms_out a,
             table (ctxsys.drvodm.feature_explain('feature_defs')) b
             where a.attribute_id = b.id;

The following statement creates the table MINING_APPLY_NESTED_TEXT. This table 
contains the non-text attributes from the original apply table and a nested table of 
comments. This table can be used to apply the model.

SQL> create table mining_apply_nested_text
        nested table comments store as apply_comments
          as select non_text.cust_id,
                    non_text.age,
                    non_text.education,
                    non_text.occupation,
                    txt.comments
              from mining_apply_text non_text,
             (select features.sequence_id,
                cast(collect(dm_nested_numerical(features.text,features.value))
                as dm_nested_numericals)  comments
              from apply_explain_out features
              group by features.sequence_id) txt
              where non_text.cust_id = txt.sequence_id(+);
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5 Building a Model

This chapter explains how to create data mining models and retrieve model details.

This chapter contains the following topics:

■ Steps in Building a Model

■ Model Settings

■ Creating a Model

■ Model Details

■ Mining Model Schema Objects

Steps in Building a Model
The general steps involved in creating a data mining model are summarized as 
follows:

1. Prepare the data. (See Chapter 3.)

2. Optionally, specify model settings. (See "Model Settings" on page 5-2.)

3. Create the model. (See "Creating a Model" on page 5-6.)

4. View model details. (See "Model Details" on page 5-8.)

5. Test the model. (See Oracle Data Mining Concepts for information about test metrics 
for classification and regression.)

6. Evaluate the model with questions like: How accurate is the model? If there are 
rules associated with the model, what is their confidence and support? How well 
does the model address the business question? 

Note: This chapter assumes a basic understanding of mining 
functions and algorithms, as described in Oracle Data Mining Concepts.

Note: To better understand this process, you can look at the source 
code of the sample data mining programs provided with Oracle 
Database. See "Sample Mining Models" on page 5-10.

See Also: Oracle Data Mining Concepts for more information about 
the process of building a model
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Model Settings
Numerous settings are available for configuring data mining models at build time. To 
specify settings, create a settings table and pass it to the model creation process. A 
settings table is optional, because all settings have default values.

Model settings are documented in Oracle Database PL/SQL Packages and Types Reference. 
If you are using the HTML version of Oracle Data Mining Application Developer's Guide, 
the links in Table 5–1 will take you directly to the documentation for each type of 
model setting.

Specifying a Settings Table
A settings table must have the columns shown in Table 5–2.

The values inserted into the setting_name column are one or more of several constants 
defined in the DBMS_DATA_MINING package. Depending on what the setting name 
denotes, the value for the setting_value column can be a predefined constant or the 
actual numerical value corresponding to the setting itself. The setting_value column 
is defined to be VARCHAR2. You can explicitly cast numerical inputs to string using the 
TO_CHAR() function, or you can rely on the implicit type conversion provided by the 
Database.

Example 5–1 creates a settings table for an SVM classification model. Since SVM is not 
the default classifier, the ALGO_NAME setting is used to specify the algorithm. Setting the 
SVMS_KERNEL_FUNCTION to SVMS_LINEAR causes the model to be built with a linear 
kernel. If you do not specify the kernel function, the algorithm chooses the kernel 
based on the number of attributes in the data.

Example 5–1 Create a Settings Table

CREATE TABLE svmc_sh_sample_settings (
  setting_name VARCHAR2(30),
  setting_value VARCHAR2(4000));

BEGIN 
  INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
    (dbms_data_mining.algo_name, dbms_data_mining.algo_support_vector_machines);
  INSERT INTO svmc_sh_sample_settings (setting_name, setting_value) VALUES
    (dbms_data_mining.svms_kernel_function, dbms_data_mining.svms_linear);
  COMMIT;
END;

Table 5–1 Model Settings

Settings Documentation

Modify the mining function See Oracle Database PL/SQL Packages and Types Reference

Modify the algorithm See Oracle Database PL/SQL Packages and Types Reference

Set global model characteristics See Oracle Database PL/SQL Packages and Types Reference

Enable or disable Automatic Data Preparation See Oracle Database PL/SQL Packages and Types Reference

Table 5–2 Settings Table Required Columns

Column Name Data Type

setting_name VARCHAR2(30)

setting_value VARCHAR2(4000)
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Specifying the Algorithm
The ALGO_NAME setting specifies the algorithm for a model. If you wish to use the 
default algorithm for a particular mining function, or if there is only one algorithm 
available for the mining function, you do not need to specify the ALGO_NAME setting.

Specifying Costs
The CLAS_COST_TABLE_NAME setting specifies the name of a cost matrix table to be used 
in building a Decision Tree model. A cost matrix biases a classification model to 
minimize costly misclassifications. The cost matrix table must have the columns 
shown in Table 5–4.

Decision Tree is the only algorithm that supports a cost matrix at build time. However, 
you can create a cost matrix and associate it with any classification model for scoring.

If you want to use costs for scoring, create a table with the columns shown in 
Table 5–4, and use the DBMS_DATA_MINING.ADD_COST_MATRIX procedure to add the cost 
matrix table to the model. You can also specify a cost matrix inline when invoking a 
PREDICTION function.

Table 5–3 Data Mining Algorithms

ALGO_NAME Value Algorithm Default? Mining Model Function

ALGO_AI_MDL Minimum Description 
Length

— attribute importance

ALGO_APRIORI_ASSOCIATION_RULES Apriori — association

ALGO_DECISION_TREE Decision Tree — classification

ALGO_GENERALIZED_LINEAR_MODEL Generalized Linear 
Model

— classification and regression

ALGO_KMEANS k-Means yes clustering

ALGO_NAIVE_BAYES Naive Bayes yes classification

ALGO_NONNEGATIVE_MATRIX_FACTOR Non-Negative Matrix 
Factorization

— feature extraction

ALGO_O_CLUSTER O-Cluster — clustering

ALGO_SUPPORT_VECTOR_MACHINES Support Vector 
MachineSuppor

yes default regression algorithm

regression, classification, and 
anomaly detection (classification 
with no target)

Table 5–4 Cost Matrix Table Required Columns

Column Name Data Type

actual_target_value CHAR, VARCHAR2, NUMBER, or FLOAT

predicted_target_value CHAR, VARCHAR2, NUMBER, or FLOAT

cost NUMBER

See Also: Oracle Data Mining Concepts for information about costs
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Specifying Prior Probabilities
The CLAS_PRIORS_TABLE_NAME setting specifies the name of a table of prior 
probabilities to be used in building a Naive Bayes model. Prior probabilities can be 
used to offset differences in distribution between the build data and the actual 
population. The priors table must have the columns shown in Table 5–5.

Specifying Class Weights
The CLAS_WEIGHTS_TABLE_NAME setting specifies the name of a table of class weights to 
be used to bias a logistic regression (GLM classification) or SVM classification model to 
favor higher weighted classes. The weights table must have the columns shown in 
Table 5–6.

Model Settings in the Data Dictionary
Information about mining model settings can be obtained from the data dictionary 
view ALL/USER/DBA_MINING_MODEL_SETTINGS. When used with the ALL prefix, this 
view returns information about the settings for the models accessible to the current 
user. When used with the USER prefix, it returns information about the settings for the 
models in the user's schema. The DBA prefix is only available for DBAs. 

The columns of ALL_MINING_MODEL_SETTINGS are described as follows and explained 
in Table 5–7.

SQL> describe all_mining_model_settings
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 OWNER                                     NOT NULL VARCHAR2(30)
 MODEL_NAME                                NOT NULL VARCHAR2(30)
 SETTING_NAME                              NOT NULL VARCHAR2(30)
 SETTING_VALUE                                      VARCHAR2(4000)
 SETTING_TYPE                                       VARCHAR2(7)

Table 5–5 Priors Table Required Columns

Column Name Data Type

target_value CHAR, VARCHAR2, NUMBER, or FLOAT

prior_probability NUMBER

See Also: Oracle Data Mining Concepts for information about priors

Table 5–6 Class Weights Table Required Columns

Column Name Data Type

target_value CHAR, VARCHAR2, NUMBER, or FLOAT

class_weight NUMBER

See Also: Oracle Data Mining Concepts for information about class 
weights

Table 5–7 ALL_MINING_MODEL_SETTINGS

Column Description

owner Owner of the mining model
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The following query lists the settings for the SVM classification model SVMC_SH_CLAS_
SAMPLE. The ALGO_NAME, CLAS_PRIORS_TABLE_NAME, and SVMS_KERNEL_FUNCTION 
settings are user-specified. These settings have been specified in a settings table for the 
model.

Example 5–2 ALL_MINING_MODEL_SETTINGS

SQL> COLUMN setting_value FORMAT A35
SQL> SELECT setting_name, setting_value, setting_type
            FROM all_mining_model_settings
            WHERE model_name in 'SVMC_SH_CLAS_SAMPLE';
 
SETTING_NAME                   SETTING_VALUE                       SETTING
------------------------------ ----------------------------------- -------
SVMS_ACTIVE_LEARNING           SVMS_AL_ENABLE                      DEFAULT
PREP_AUTO                      OFF                                 DEFAULT
SVMS_COMPLEXITY_FACTOR         0.244212                            DEFAULT
SVMS_KERNEL_FUNCTION           SVMS_LINEAR                         INPUT
CLAS_WEIGHTS_TABLE_NAME        svmc_sh_sample_class_wt             INPUT
SVMS_CONV_TOLERANCE            .001                                DEFAULT
ALGO_NAME                      ALGO_SUPPORT_VECTOR_MACHINES        INPUT
 
7 rows selected.

SQL> COLUMN setting_value FORMAT A25
SQL> SELECT setting_name, setting_value, setting_type 
           FROM all_mining_model_settings 
           WHERE model_name in 'SVMC_SH_CLAS_SAMPLE';

model_name Name of the mining model

setting_name Name of the setting

setting_value Value of the setting

setting_type 'INPUT' if the value is specified by a user; 'DEFAULT' if the value is 
system-generated

Table 5–7 (Cont.) ALL_MINING_MODEL_SETTINGS

Column Description
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SETTING_NAME                   SETTING_VALUE                  SETTING_TYPE
------------------------------ -------------------------      ------------
ALGO_NAME                      ALGO_SUPPORT_VECTOR_MACHINES   INPUT
SVMS_ACTIVE_LEARNING           SVMS_AL_ENABLE                 DEFAULT
CLAS_PRIORS_TABLE_NAME         svmc_sh_sample_priors          INPUT
PREP_AUTO                      OFF                            DEFAULT
SVMS_COMPLEXITY_FACTOR         0.244212                       DEFAULT
SVMS_KERNEL_FUNCTION           SVMS_LINEAR                    INPUT
SVMS_CONV_TOLERANCE            .001                           DEFAULT

Creating a Model
The CREATE_MODEL procedure in the DBMS_DATA_MINING package creates a mining 
model with the specified name, mining function, and case table (build data).

DBMS_DATA_MINING.CREATE_MODEL (
      model_name            IN VARCHAR2,
      mining_function       IN VARCHAR2,
      data_table_name       IN VARCHAR2,
      case_id_column_name   IN VARCHAR2,
      target_column_name    IN VARCHAR2 DEFAULT NULL,
      settings_table_name   IN VARCHAR2 DEFAULT NULL,
      data_schema_name      IN VARCHAR2 DEFAULT NULL,
      settings_schema_name  IN VARCHAR2 DEFAULT NULL,
      transform_list        IN DM_TRANSFORMS DEFAULT NULL;)

Mining Functions
The mining function is a required argument to the CREATE_MODEL procedure. A data 
mining function specifies a class of problems that can be modeled and solved. 

Data mining functions implement either supervised or unsupervised learning. 
Supervised learning uses a set of independent attributes to predict the value of a 
dependent attribute or target. Unsupervised learning does not distinguish between 
dependent and independent attributes.

Supervised functions are predictive. Unsupervised functions are descriptive.

You can specify any of the values in Table 5–8 for the mining_function parameter to 
CREATE_MODEL. 

Note: Some model settings are determined by the algorithm if not 
specified in a settings table. You can find the system-generated setting 
values by querying the ALL_MINING_MODEL_SETTINGS view.

See Also: Oracle Database PL/SQL Packages and Types Reference for 
details about model settings

See Also: DBMS_DATA_MINING.CREATE_MODEL in Oracle Database 
PL/SQL Packages and Types Reference
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Transformation List
You can optionally specify a list of transformations to be applied to the build data 
before it is acted on by the algorithm. You can use the STACK interface in DBMS_DATA_
MINING_TRANSFORM to build a list of transformation expressions for different attributes, 
you can specify a single transformation using the XFORM interface in DBMS_DATA_
MINING_TRANSFORM, or you can write your own SQL expressions.

The transformation list argument to CREATE_MODEL interacts with the PREP_AUTO 
setting, which controls Automatic Data Preparation (ADP): 

■ When ADP is on and you specify a transformation list, your transformations are 
applied with the automatic transformations and embedded in the model. 

■ When ADP is off and you specify a transformation list, your transformations are 
applied and embedded in the model, but no system-generated transformations are 
performed.

Table 5–8 Mining Model Functions

Mining_Function Value Description

ASSOCIATION Association is a descriptive mining function. An association 
model identifies relationships and the probability of their 
occurrence within a data set.

Association models use the Apriori algorithm.

ATTRIBUTE_IMPORTANCE Attribute Importance is a predictive mining function. An 
attribute importance model identifies the relative importance of 
an attribute in predicting a given outcome.

Attribute Importance models use the Minimal Description 
Length algorithm.

CLASSIFICATION Classification is a predictive mining function. A classification 
model uses historical data to predict a categorical target. 

Classification models can use: Naive Bayes, Decision Tree, 
Logistic Regression, or Support Vector Machine algorithms. The 
default is Naive Bayes.

The classification function can also be used for anomaly 
detection. In this case, the SVM algorithm with a null target is 
used (One-Class SVM).

CLUSTERING Clustering is a descriptive mining function. A clustering model 
identifies natural groupings within a data set.

Clustering models can use: k-Means or O-Cluster algorithms. 
The default is k-Means.

FEATURE_EXTRACTION Feature Extraction is a descriptive mining function. A feature 
extraction model creates an optimized data set on which to base 
a model.

Feature extraction models use the Non-Negative Matrix 
Factorization algorithm.

REGRESSION Regression is a predictive mining function. A regression model 
uses historical data to predict a numerical target.

Regression models can use Support Vector Machine or Linear 
Regression. The default is Support Vector Machine.

See Also: Oracle Data Mining Concepts for an introduction to mining 
functions
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■ When ADP is on and you do not specify a transformation list, the 
system-generated transformations are applied and embedded in the model. 

■ When ADP is off and you do not specify a transformation list, no transformations 
are embedded in the model; you must separately prepare the data sets you use for 
building, testing, and scoring the model. This is the pre-release 11 behavior; it is 
the default behavior in 11g. 

Model Details
Model details describe model attributes, rules, and other information about the model. 
You can invoke a GET_MODEL_DETAILS function to retrieve model details. A separate 
GET_MODEL_DETAILS function exists for each algorithm.

Model details reverse the transformations applied to the attributes, thus enabling the 
information to be easily understood by a user. You can obtain the transformations 
embedded in the model by invoking the GET_MODEL_TRANSFORMATIONS function.

Model details, summarized in Table 5–9, support model transparency.

Mining Model Schema Objects
Mining models are database schema objects. Several system and object privileges, 
described in "Users and Privileges" in Oracle Data Mining Administrator's Guide, govern 
data mining activities. Mining models also support SQL AUDIT and SQL COMMENT, 
as described in "Mining Model Schema Objects" in Oracle Data Mining Administrator's 
Guide.

Mining Models in the Data Dictionary
Information about mining model objects can be obtained from the data dictionary 
view ALL/USER/DBA_MINING_MODELS. When used with the ALL prefix, this view returns 
information about the mining models accessible to the current user. When used with 

See Also: Oracle Data Mining Concepts for information about 
Automatic Data Preparation

Table 5–9 Model Details

Algorithm Model Details

Apriori (association rules) Association rules and frequent itemsets

Decision Tree The full model with its content and rules

Generalized Linear Models Attribute-level coefficient and statistics from GET_MODEL_
DETAILS_GLM and global model information from GET_
MODEL_DETAILS_GLOBAL

k-Means For each cluster: statistics and hierarchy information, 
centroid, attribute histograms, and rules

MDL (attribute importance) Ranked importance of each attribute

Naive Bayes Conditional probabilities and priors

Non-Negative Matrix Factorization Coefficients

O-Cluster For each cluster: statistics and hierarchy information, 
centroid, attribute histograms, and rules

Support Vector Machine Coefficients for linear models
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the USER prefix, it returns information about the mining models in the user's schema. 
The DBA prefix is only available for DBAs. 

The columns of ALL_MINING_MODELS are described as follows and explained in 
Table 5–10.

SQL> describe all_mining_models
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 OWNER                                     NOT NULL VARCHAR2(30)
 MODEL_NAME                                NOT NULL VARCHAR2(30)
 MINING_FUNCTION                                    VARCHAR2(30)
 ALGORITHM                                          VARCHAR2(30)
 CREATION_DATE                             NOT NULL DATE
 BUILD_DURATION                                     NUMBER
 MODEL_SIZE                                         NUMBER
 COMMENTS                                           VARCHAR2(4000)

The query in Example 5–3 returns information about the mining models in the schema 
DMUSER.

Example 5–3 ALL_MINING_MODELS

SQL> select model_name, mining_function, algorithm, creation_date, build_duration
            FROM all_mining_models WHERE owner IN 'DMUSER';

MODEL_NAME              MINING_FUNCTION         ALGORITHM                  CREATION_DATE BUILD_DURA 
---------------------   ---------------------  --------------------------- ----------------------- 
AI_SH_SAMPLE            ATTRIBUTE_IMPORTANCE   MINIMUM_DESCRIPTION_LENGTH   13-JUN-07         1 
AR_SH_SAMPLE            ASSOCIATION_RULES      APRIORI_ASSOCIATION_RULES    13-JUN-07         5 
DT_SH_CLAS_SAMPLE       CLASSIFICATION         DECISION_TREE                13-JUN-07         4 
KM_SH_CLUS_SAMPLE       CLUSTERING             KMEANS                       13-JUN-07         7 
NB_SH_CLAS_SAMPLE       CLASSIFICATION         NAIVE_BAYES                  13-JUN-07         3 
OC_SH_CLUS_SAMPLE       CLUSTERING             O_CLUSTER                    13-JUN-07        14 
NMF_SH_SAMPLE           FEATURE_EXTRACTION     NONNEGATIVE_MATRIX_FACTOR    13-JUN-07         2 
SVMC_SH_CLAS_SAMPLE     CLASSIFICATION         SUPPORT_VECTOR_MACHINES      13-JUN-07         4 
GLMR_SH_REGR_SAMPLE     REGRESSION             GENERALIZED_LINEAR_MODEL     13-JUN-07         3 
GLMC_SH_CLAS_SAMPLE     CLASSIFICATION         GENERALIZED_LINEAR_MODEL     13-JUN-07         3 
SVMR_SH_REGR_SAMPLE     REGRESSION             SUPPORT_VECTOR_MACHINES      13-JUN-07         7 
SVMO_SH_CLAS_SAMPLE     CLASSIFICATION         SUPPORT_VECTOR_MACHINES      13-JUN-07         3 
T_SVM_CLAS_SAMPLE       CLASSIFICATION         SUPPORT_VECTOR_MACHINES      13-JUN-07         8 
T_NMF_SAMPLE            FEATURE_EXTRACTION     NONNEGATIVE_MATRIX_FACTOR    13-JUN-07         7

Table 5–10 ALL_MINING_MODELS

Column Description

owner Owner of the mining model.

model_name Name of the mining model.

mining_function The mining model function. See "Mining Functions" on 
page 5-6.

algorithm The algorithm used by the mining model. See "Specifying the 
Algorithm" on page 5-3.

creation_date The date on which the mining model was created.

build_duration The duration of the mining model build process in seconds.

model_size The size of the mining model in megabytes.

comments Results of a SQL COMMENT applied to the mining model.
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Mining Model Privileges
You need the CREATE MINING MODEL privilege to create models in your own schema. 
You can perform any operation on models that you own. This includes applying the 
model, adding a cost matrix, renaming the model, and dropping the model. 

You can perform specific operations on mining models in other schemas if you have 
the appropriate system privileges. For example, CREATE ANY MINING MODEL enables 
you to create models in other schemas. SELECT ANY MINING MODEL enables you to 
apply models that reside in other schemas. You can add comments to models if you 
have the COMMENT ANY MINING MODEL privilege.

Sample Mining Models
The models listed in Example 5–3 are created by the Oracle Data Mining sample 
programs provided with Oracle Database. The sample programs, in PL/SQL and in 
Java, create mining models that illustrate each of the algorithms supported by Oracle 
Data Mining.

The sample programs are installed using Oracle Database Companion. Once installed, 
you can locate them in the rdbms/demo subdirectory under Oracle Home. You can list 
the sample PL/SQL data mining programs on a Linux system with commands like 
these.

> cd $ORACLE_HOME/rdbms/demo
> ls dm*.sql

Likewise, you can list the sample Java data mining programs with commands like the 
following:

> cd $ORACLE_HOME/rdbms/demo
> ls dm*.java

See Also: Oracle Data Mining Administrator's Guide for details

See Also: Oracle Data Mining Administrator's Guide to learn how to 
install, configure, and execute the Data Mining sample programs.
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6 Scoring and Deployment

This chapter explains how to use data mining models to mine your data.

This chapter contains the following sections:

■ In-Database Scoring

■ What is Deployment?

■ Real-Time Scoring

■ Cost-Sensitive Decision Making

■ Batch Apply

In-Database Scoring
Scoring, the application of models to new data, is a primary objective of data mining. 
Once the models have been built, the challenges come in deploying them to obtain the 
best results, and in maintaining them within a production environment.

In traditional data mining, models are built using specialized software on a remote 
system and deployed to another system for scoring. This is a cumbersome, error-prone 
process open to security violations and difficulties in data synchronization.

With Oracle Data Mining, scoring is easy and secure. The scoring engine and the data 
both reside within the database. Scoring is an extension to the SQL language, so the 
results of mining can easily be incorporated into applications and reporting systems.

In-database mining provides security, backup and recovery, and high performance. It 
minimizes the IT effort needed to support data mining initiatives. Using standard 
database techniques, models can easily be refreshed (re-created) on more recent data 
and redeployed. The deployment is immediate since the scoring query remains the 
same; only the underlying model is replaced in the database.

What is Deployment?
Deploying a model means using it within a target environment. Model deployment 
could be:

■ Scoring data either for batch or real-time results

■ Extracting model details to produce reports. For example: the rules from a 
Decision Tree model, or the attribute rankings from an Attribute Importance 
model

■ Extending the business intelligence infrastructure of a data warehouse by 
incorporating mining results in applications or operational systems
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■ Moving a model from the database where it was built to the database where it will 
be used for scoring (export/import)

Real-Time Scoring
Oracle Data Mining SQL functions enable prediction, clustering, and feature extraction 
analysis to be easily integrated into live production and operational systems. Because 
mining results are returned within SQL queries, mining can occur in real time. 

With real-time scoring, point-of-sales database transactions can be mined. Predictions 
and rule sets can be generated to help front-line workers make better analytical 
decisions. Real-time scoring enables fraud detection, identification of potential 
liabilities, and recognition of better marketing and selling opportunities. 

The query in Example 6–1 uses a Decision Tree model named dt_sh_clas_sample to 
predict the probability that customer 101488 will use an affinity card. A customer 
representative could retrieve this information in real time when talking to this 
customer on the phone. Based on the query result, the representative might offer an 
extra-value card, since there is a 73% chance that the customer will use a card.

Example 6–1 Real-Time Query with Prediction Probability

SELECT PREDICTION_PROBABILITY(dt_sh_clas_sample, 1 USING *) cust_card_prob
       FROM mining_data_apply_v
       WHERE cust_id = 101488;

CUST_CARD_PROB
--------------
    .727642276

Prediction 
Oracle Data Mining supports six SQL functions that return results from predictive 
models (classification or regression). 

Predictive models produce a target value for each row (case) in the scoring data. Each 
SQL function returns different information from the scoring results.

Best Prediction
(Classification or regression). For classification, the PREDICTION function returns the 
target value that is predicted with the highest probability (or lowest cost, if costs are 
specified). For regression, PREDICTION returns the best predicted target value.

PREDICTION supports costs for classification. See "Cost-Sensitive Decision Making" on 
page 6-5.

See Also: Oracle Data Mining Administrator's Guide for information 
about exporting and importing data mining models

See Also: Oracle Data Mining Concepts for information on 
classification and regression

See Also: Oracle Database SQL Language Reference for syntax and an 
example that uses PREDICTION
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Confidence Bounds (GLM only)
(Classification or regression) The PREDICTION_BOUNDS function returns the upper and 
lower confidence bounds computed by the model. 

Confidence is the degree of certainty that the true value (regression) or probability 
(classification) lies within the bounded interval. The default confidence is .95. 
Confidence can be specified by the user in the GLMS_CONF_LEVEL setting for the model. 
You can override the confidence associated with the model by specifying the 
confidence inline when you invoke the PREDICTION_BOUNDS function.

No confidence bounds are returned if ridge regression is being used by the algorithm.

Costs
(Classification only) The PREDICTION_COST function returns the cost associated with 
the class that is predicted with the lowest cost. If you specify a class, the function 
returns the cost associated with that class.

Costs are a user-specified biasing mechanism for classification. See "Cost-Sensitive 
Decision Making" on page 6-5.

Rules (Decision Tree only)
(Classification only) The PREDICTION_DETAILS function returns the rule of a Decision 
Tree model corresponding to the given prediction. A rule is the condition (combination 
of attribute values) that leads to a specific classification.

Decision Tree rule identifiers are returned as XML. The full rules can be retrieved with 
the GET_MODEL_DETAILS_XML function.

Probability
(Classification only) The PREDICTION_PROBABILITY function returns the probability 
associated with the best prediction (prediction with the highest probability) or the 
probability associated with the class that you specify.

See Also:

■ Oracle Database SQL Language Reference for syntax and an example 
that uses PREDICTION_BOUNDS

■ Oracle Data Mining Concepts for information on GLM

■ Oracle Database PL/SQL Packages and Types Reference for 
information on GET_MODEL_DETAILS_GLM

See Also: Oracle Database SQL Language Reference for syntax and an 
example that uses PREDICTION_COST

See Also:

■ Oracle Database SQL Language Reference for syntax and an example 
that uses PREDICTION_DETAILS

■ Oracle Data Mining Concepts for information about Decision Tree

■ Oracle Database PL/SQL Packages and Types Reference for 
information on GET_MODEL_DETAILS_XML

See Also: Oracle Database SQL Language Reference for syntax and an 
example that uses PREDICTION_PROBABILITY
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Per-Class Results
(Classification only) The PREDICTION_SET function returns all the target classes, 
associated probabilities, and associated costs (if specified) for each scored row. You can 
specify parameters to restrict the output of the function.

Clustering 
Oracle Data Mining supports three SQL functions that return results when applying 
clustering models.

Clustering models assign each row to a cluster with an associated probability. Each 
SQL function returns different information from the scoring results.

Cluster Identifier
The CLUSTER_ID function returns the identifier of the cluster predicted with the highest 
probability.

Probability
The CLUSTER_PROBABILITY function returns the probability associated with the cluster 
to which cases are most likely to be assigned. If you specify a cluster ID, the function 
returns the probability associated with that cluster.

Per-Cluster Probabilities
The CLUSTER_SET function returns the probability associated with each cluster for each 
scored row. You can specify parameters to restrict the output of the function.

Feature Extraction
Oracle Data Mining supports three SQL functions that return results from feature 
extraction models.

Feature extraction models combine the attributes into a set of features that capture 
important characteristics of the data. The scoring process generates a value of each 
feature for each row. The value is a number that identifies the match quality of the case 
to the feature. Each SQL function returns different information from the scoring 
results.

Feature Identifier
The FEATURE_ID function returns the identifier of the feature with the highest value 
(match quality) for the data.

See Also:

■ Oracle Database SQL Language Reference for syntax and an example 
that uses PREDICTION_SET

■ "Cost-Sensitive Decision Making" on page 6-5

See Also: Oracle Data Mining Concepts for information on clustering

See Also: Oracle Database SQL Language Reference for syntax and an 
example that uses CLUSTER_ID

See Also: Oracle Database SQL Language Reference for syntax and an 
example that uses CLUSTER_PROBABILITY
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Match Quality
The FEATURE_VALUE function returns the highest feature value. If you specify a feature 
ID, the function returns the value of that feature.

Per-Feature Values
The FEATURE_SET function returns the values associated with each feature for each 
scored row. You can specify parameters to restrict the output of the function. 

Save Scoring Results in a Table
If you wish to save the results of a scoring function, you can store them in a table.

This example shows how to save the results of scoring a customer response model.

UPDATE CUST_RESPONSE_APPLY_UPDATE
SET prediction = prediction(CUST_RESPONSE19964_DT using *),
     probability =  prediction_probability(CUST_RESPONSE19964_DT using *)

The table in question has all of the predictors, and has columns to hold the prediction 
and probability. The assumption is that any necessary transformations are embedded 
in the model (otherwise the using clause would need to contain them).

Cost-Sensitive Decision Making
Costs are user-specified numbers that bias classification. The algorithm uses positive 
numbers to penalize more expensive outcomes over less expensive outcomes. Higher 
numbers indicate higher costs. The algorithm uses negative numbers to favor more 
beneficial outcomes over less beneficial outcomes. Lower negative numbers indicate 
higher benefits.

All classification algorithms can use costs for scoring. You can specify the costs in a 
cost matrix table, or you can specify the costs inline when scoring. The PREDICTION, 
PREDICTION_COST, and PREDICTION_SET functions all support costs. 

A sample cost matrix table is shown in Table 6–1. 

The cost matrix in Table 6–1 specifies costs for a binary target. The matrix indicates 
that the algorithm should treat a misclassified 0 as twice as costly as a misclassified 1. 

See Also: Oracle Database SQL Language Reference for syntax and an 
example that uses FEATURE_ID

See Also: Oracle Database SQL Language Reference for syntax and an 
example that uses FEATURE_VALUE

See Also: Oracle Database SQL Language Reference for syntax and an 
example that uses FEATURE_SET

Table 6–1 Sample Cost Matrix Table

ACTUAL_TARGET_VALUE PREDICTED_TARGET_VALUE COST

0 0 0

0 1 2

1 0 1

1 1 0
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If the table name is cost_tbl and it is associated with the Naive Bayes model nb_sh_
clas_sample, then the following query takes cost_tbl into account when scoring nb_
sh_clas_sample. The output will be restricted to those rows where a prediction of 1 is 
less costly then a prediction of 0.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
   FROM mining_data_apply_v
   WHERE PREDICTION (nb_sh_clas_sample COST MODEL
      USING cust_marital_status, education, household_size) = 1
   GROUP BY cust_gender
   ORDER BY cust_gender;

If there is a possibility that the cost matrix table is not present, or that a cost matrix was 
not specified for the model, you can use the AUTO keyword with COST MODEL so that 
scoring only uses costs if the cost matrix is available. 

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
   FROM mining_data_apply_v
   WHERE PREDICTION (nb_sh_clas_sample COST MODEL AUTO
      USING cust_marital_status, education, household_size) = 1
   GROUP BY cust_gender
   ORDER BY cust_gender;

You can specify the costs inline when you invoke the scoring function. The inline costs 
are used for scoring even if a cost matrix table is associated with the model. Here is the 
same query with the costs specified inline.

SELECT cust_gender, COUNT(*) AS cnt, ROUND(AVG(age)) AS avg_age
   FROM mining_data_apply_v
   WHERE PREDICTION (nb_sh_clas_sample
                     COST (0,1) values ((0, 2),
                                        (1, 0))
                     USING cust_marital_status, education, household_size) = 1
   GROUP BY cust_gender
   ORDER BY cust_gender;

To associate a cost matrix table with a model for scoring, use the ADD_COST_MATRIX 
procedure in the DBMS_DATA_MINING package. You can retrieve the cost matrix with the 
GET_COST_MATRIX function. The REMOVE_COST_MATRIX procedure removes the cost 
matrix. If you want to use a different cost matrix table with a model, first remove the 
existing one then add the new one.

-- add cost matrix table cost_tbl
-- to model nb_sh_clas_sample
-- for scoring
--
EXEC DBMS_DATA_MINING.ADD_COST_MATRIX('nb_sh_clas_sample', 'cost_tbl');
--
-- replace cost_tbl with cost_tbl_2
--
EXEC DBMS_DATA_MINING.REMOVE_COST_MATRIX('nb_sh_clas_sample', 'cost_tbl');
EXEC DBMS_DATA_MINING.ADD_COST_MATRIX('nb_sh_clas_sample', 'cost_tbl_2');

The Decision Tree algorithm can use costs to bias the model build. If you want to 
create a Decision Tree model with costs, create a cost matrix table and provide its name 
in the CLAS_COST_TABLE_NAME setting for the model. If you specify costs when scoring 
the model, the cost matrix used to create the model will be used. If you want to use a 
different cost matrix table for scoring, first remove the existing cost matrix table then 
add the new one.
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Batch Apply 
Oracle Data Mining supports a batch apply operation that writes the results of scoring 
directly to a table. The columns in the table are mining function-dependent. The apply 
operation is accomplished by DBMS_DATA_MINING.APPLY.

APPLY creates an output table with the columns shown in Table 6–2.

Example 6–2 illustrates anomaly detection with APPLY. The query of the APPLY output 
table returns the ten first customers in the table. Each has a a probability for being 
typical (1) and a probability for being anomalous (0).

Example 6–2 Anomaly Detection with DBMS_DATA_MINING.APPLY

EXEC dbms_data_mining.apply
        ('SVMO_SH_Clas_sample','svmo_sh_sample_prepared', 
         'cust_id', 'one_class_output'); 

SELECT * from one_class_output where rownum < 11;
 
   CUST_ID PREDICTION PROBABILITY
---------- ---------- -----------
    101798          1  .567389309
    101798          0  .432610691
    102276          1  .564922469
    102276          0  .435077531
    102404          1   .51213544
    102404          0   .48786456
    101891          1  .563474346
    101891          0  .436525654
    102815          0  .500663683
    102815          1  .499336317

Table 6–2 APPLY Output Table

Mining Function Output Columns

classification CASE_ID

PREDICTION

PROBABILITY

regression CASE_ID

PREDICTION

anomaly detection 
(one-class SVM)

CASE_ID

PREDICTION

PROBABILITY

clustering CASE_ID

CLUSTER_ID

PROBABILITY

feature extraction CASE_ID

FEATURE_ID

MATCH_QUALITY
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Comparing APPLY and SQL Scoring Functions
Whether performed by APPLY or by a SQL scoring function, scoring generates the same 
mining results. Classification produces a prediction and a probability for each case; 
clustering produces a cluster ID and a probability for each case, and so on. The 
difference lies in the way that scoring results are captured and the mechanisms that 
can be used for retrieving them.

Since APPLY output is stored separately from the scoring data, it must be joined to the 
scoring data to support queries that include the data attributes being mined (the 
scored rows). Thus any model that will be used with APPLY must have a case ID.

A case ID is not required for models that will be applied with SQL scoring functions. 
Likewise, storage and joins are not required, since scoring results are generated and 
consumed in real time within a SQL query.

The SQL scoring functions offer flexibility. You can invoke the function that returns the 
specific information you need. You simply reference a model and identify the kind of 
mining results you want to retrieve. 
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7 The Data Mining Java API

This chapter presents an overview of the Oracle Data Mining Java API. The Java API is 
based on JDM, the industry-standard Java API for data mining. 

The Java API is layered on the PL/SQL and SQL language interfaces to Oracle Data 
Mining. All the SQL-based functionality described in this manual is also implemented 
in the Java API.

However, the Java API supports several features not implemented in SQL, such as 
asynchronous execution of mining tasks and text transformation.

This chapter contains the following topics:

■ The Java Environment

■ Connecting to the Data Mining Engine

■ API Design Overview

The Java Environment
The Oracle Data Mining Java API requires Oracle Database 11g Release 2 (11.2) and 
J2SE 1.5. It is backward compatible and can be used with Oracle Database 10.2.

To use the Oracle Data Mining Java API, include the following libraries in your 
CLASSPATH:

$ORACLE_HOME/rdbms/jlib/jdm.jar
$ORACLE_HOME/rdbms/jlib/ojdm_api.jar
$ORACLE_HOME/rdbms/jlib/xdb.jar
$ORACLE_HOME/jdbc/lib/ojdbc5.jar
$ORACLE_HOME//oc4j/j2ee/home/lib/connector.jar 
$ORACLE_HOME/jlib/orai18n.jar
$ORACLE_HOME/jlib/orai18n-mapping.jar 
$ORACLE_HOME/lib/xmlparserv2.jar

Note: The Oracle Data Mining Java API is deprecated in this release.

Oracle recommends that you not use deprecated features in new 
applications. Support for deprecated features is for backward 
compatibility only

See Also: Oracle Data Mining Java API Reference (javadoc)
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Connecting to the Data Mining Engine
The Data Mining Engine (DME) is the infrastructure that offers a set of data mining 
services to its JDM clients. The Oracle Database provides the in-database data mining 
functionality for JDM through the core Oracle Data Mining option. So in the rest of this 
document the Oracle Database is referred to as the DME. 

To access data mining functionality in the database, a DME Connection needs to be 
created. To connect to the DME, OJDM supports following different options.

The DME Connection object is described in detail in "Features of a DME Connection" 
on page 7-3.

Connection Factory
The Connection factory is used to create a DME connection. The JDM standard defines 
ConnectionFactory as a Java interface to provide a vendor neutral approach to create a 
DME Connection. In this approach, the application infrastructure needs to register the 
instance of ConnectionFactory in a JNDI server. Applications can lookup for 
ConnectionFactory in the JNDI server to instantiate a Connection using this factory.

OJDM provides oracle.dmt.jdm.resource.OraConnectionFactory class, which can 
either be instantiated and accessed to create the connection or can be registered in 
JNDI server. Following code illustrates these two approaches to create a connection 
factory.

Create ConnectionFactory Using OraConnectionFactory
//Create OraConnectionFactory
javax.datamining.resource.ConnectionFactory connFactory = 
                 oracle.dmt.jdm.resource.OraConnectionFactory();

Lookup ConnectionFactory From the JNDI Server
//Setup the initial context to connect to the JNDI server
Hashtable env = new Hashtable();
env.put( Context.INITIAL_CONTEXT_FACTORY,
"oracle.dmt.jdm.resource.OraConnectionFactory" );
env.put( Context.PROVIDER_URL, "http://myHost:myPort/myService" );
env.put( Context.SECURITY_PRINCIPAL, "user" );
env.put( Context.SECURITY_CREDENTIALS, "password" );
InitialContext jndiContext = new javax.naming.InitialContext( env );
// Perform JNDI lookup to obtain the connection factory
javax.datamining.resource.ConnectionFactory dmeConnFactory =
(ConnectionFactory) jndiContext.lookup("java:comp/env/jdm/MyServer");
//Lookup ConnectionFactory
javax.datamining.resource.ConnectionFactory connFactory = 
  (ConnectionFactory) jndiContext.lookup("java:comp/env/jdm/MyServer");

Connect Using JDBC
This option is useful when the applications want to control the JDBC Connections 
outside the OJDM and allow the OraConnectionFactory to use the specified 
OracleDataSource to create the database connection. This approach gives applications 
the ability to use the implicit connection caching features as required. By default, 
OJDM doesn't enable the implicit connection caching. Oracle Database JDBC Developer's 
Guide for information about connection caching.

//Create an OracleDataSource
OracleDataSource ods = new OracleDataSource();
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ods.setURL(URL);
ods.setUser(user);
ods.setPassword(password);
 
//Create a connection factory using the OracleDataSource
javax.datamining.resource.ConnectionFactory connFactory = 
  oracle.dmt.jdm.resource.OraConnectionFactory(ods);
//Create DME Connection
javax.datamining.resource.Connection dmeConn = 
    connFactory.getConnection();

Connect Using ConnectionSpec
This option is useful when the application doesn't want to pre-create the JDBC 
Connection and allow OJDM to maintain the JDBC Connection. Here the user needs to 
create an empty ConnectionSpec instance using getConnectionSpec() method in the 
oracle.dmt.jdm.resource.OraConnectionFactory class and create a DME 
Connection using the connection spec. The following code illustrates the usage. 

//Create ConnectionSpec
ConnectionSpec connSpec = m_dmeConnFactory.getConnectionSpec();
connSpec.setURI("jdbc:oracle:thin:@host:port:sid");
connSpec.setName("user");
connSpec.setPassword("password");          
 
//Create DME Connection
javax.datamining.resource.Connection m_dmeConn = 
m_dmeConnFactory.getConnection(connSpec);

Features of a DME Connection
In the Oracle Data Mining Java API, the DME Connection is the primary factory 
object. The Connection instantiates the object factories using the getFactory method. 
The Connection object provides named object lookup, persistence, and task execution 
features.

Create Object Factories
The Connection.getFactory method creates a factory object. For example, to create a 
factory for the PhysicalDataSet object, pass the absolute name of the object to this 
method. The getFactory method creates an instance of PhysicalDataSetFactory. 

javax.datamining.data.PhysicalDataSetFactory pdsFactory =
                dmeConn.getFactory("javax.datamining.data.PhysicalDataSet");

Provide Access to Mining Object Metadata
The Connection object provides methods for retrieving metadata about mining objects. 

Method Description

getCreationDate Returns the creation date of the specified named object.

getCreationDate(java.lang.String objectName,
                 NamedObject objectType)
     returns java.util.Date
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Example 7–1 Oracle JDM Extension Method getObjectNames

This example illustrates the getObjectNames method. 

To list the names of classification test metrics computed by the user SCOTT, specify:

the schemaPattern as "SCOTT"
objectType as NamedObject.testMetrics
objectPattern as null
minorType_1 as MiningFunction.classification
minorType_2 as null

Irrespective of the type of filters specified, the getObjectNames method returns the 
java.sql.ResultSet object with the following columns.

Persistence and Retrieval of Mining Objects
The Connection object provides methods for retrieving mining objects and saving 
them in the DME. Persistent objects are stored as database objects. Transient objects are 
stored in memory by the Connection object.

getDescription Returns the description of the specified mining object.

getDescription(java.lang.String objectName,
                NamedObject objectType)
     returns java.lang.String 

getObjectNames Returns a collection of the names of the objects of the specified type.

getObjectNames(NamedObject objectType)
     returns java.util.Collection

getObjectNames This is an Oracle JDM extension method that is added in 11.1 to 
provide a listing of mining object names across schemas or within a 
schema. It provides various optional method arguments that can be 
used to get a filtered list of arguments.

getObjectNames(
java.lang.String schemaPattern, 
NamedObject objectType, 
java.lang.String objectNamePattern, 
javax.datamining.Enum minorType_1,
javax.datamining.Enum minorType_2 ): 
returns java.sql.ResultSet

See Example 7–1.

Column Name Data Type Description

SCHEMA_NAME String Name of the schema (can be null)

TYPE String Type of the mining object

NAME String Name of the mining object

MINOR_TYPE_1 String Mining objects can have minor/sub types. For example, 
model objects can have function and algorithm as minor 
types.

MINOR_TYPE_2 String Mining objects can have more than one minor type. If they 
have a second minor type, then this column is used.

CREATION_DATE Timestamp Date when this object was created

DESCRIPTION String Description of the object

Method Description
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Execute Mining Tasks
The Connection object provides an execute method, which can execute mining tasks 
either asynchronously or synchronously. The DME uses the database Scheduler to 
execute mining tasks, which are stored in the user's schema as Scheduler jobs. The 
following methods are used to execute the tasks.

Method Description

saveObject Saves the named object in the metadata repository associated with the 
connection.

saveObject(java.lang.String name, MiningObject object,
            boolean replace)

retrieveObject Retrieves a copy of the specified named object from the metadata 
repository associated with the connection.

retrieveObject(java.lang.String objectIdentifier)
    returns MiningObject 

retrieveObject Retrieves a copy of the named object from the metadata repository 
associated with the connection.

retrieveObject(java.lang.String name, 
                NamedObject objectType)
     returns MiningObject 

retrieveObjects Returns a collection of mining objects of the given type that were 
created within the specified time interval (from createAfter to 
createBefore).

(java.util.Date createdAfter, java.util.Date createdBefore,
 NamedObject objectType):
 returns java.util.Collection

retrieveObjects Returns a collection of mining objects of the specified type that were 
created within the specified time interval (from createAfter to 
createBefore)

retrieveObjects(java.util.Date createdAfter, 
java.util.Date createdBefore, NamedObject objectType, 
Enum minorType): 
returns java.util.Collection

See Also:

■ Chapter 2, "A Tour of the Data Mining APIs".

■ "API Design Overview" on page 7-7.

Task Execution execute method syntax

asynchronous execute(java.lang.String taskName)
     returns ExecutionHandle                 

synchronous execute(Task task,java.lang.Long timeout))
     returns ExecutionHandle                 

Typically to be used with single record scoring, but it may be used in 
other contexts as well.
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Retrieve DME Capabilities and Metadata
The Connection interface provides a ConnectionMetaData and supportsCapability 
retrieval methods. This feature is useful for applications to know more about the DME 
at runtime. The following methods are used for retrieving this information from the 
connection. 

Retrieve Version Information
The ConnectionMetaData object provides methods for retrieving JDM standard version 
information and Oracle version information. 

See Also:

■ "Task" on page 2-7

■ "Executing Mining Tasks" on page 7-10

■ Oracle Database Administrator's Guide for information about the 
Oracle Database Scheduler.

Method Description

getMetaData Returns information about the underlying DME instance 
represented through an active connection. 
ConnectionMetaData provides version information for the 
JDM implementation and Oracle Database.

getMetaData()
      returns ConnectionMetaData

getSupportedFunctions Returns an array of mining functions that are supported by 
the implementation.

getSupportedFunctions()
     returns MiningFunction[]

getSupportedAlgorithms Returns an array of mining algorithms that are supported by 
the specified mining function.

getSupportedAlgorithms(MiningFunction function)
     returns MiningAlgorithm[]

supportsCapability Returns true if the specified combination of mining 
capabilities is supported. If an algorithm is not specified, 
returns true if the specified function is supported.

supportsCapability(MiningFunction function,
                    MiningAlgorithm algorithm, 
                    MiningTask taskType)
     returns boolean

Method Description

getVersion Returns the version of the JDM Standard API. It must be "JDM 1.0" 
for the first release of JDM.

getVersion()
     returns String

getMajorVersion Returns the major version number. For the first release of JDM, this 
is "1".

getMajorVersion()
     returns int
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API Design Overview
This section briefly describes the OJDM design principles to familiarize the developers 
with the API. The JDM standard uses the factory method pattern as the core design 
pattern for the API. User can instantiate a JDM object using its factory. This enables 
JDM vendors like Oracle to implement a vendor neutral API. OJDM follows the same 
factory method pattern for its extensions. javax.datamining is the base package for 
the JDM standard defined classes and oracle.dmt.jdm is the base package for the 
Oracle extensions to the JDM standard

The JDM standard organizes its packages by the mining functions and mining 
algorithms. For example, javax.datamining.supervised package has all the supervised 
functions related classes and sub-packages java.datamining.supervised.classification 
and java.datamining.supervised.regression. Each function sub-package has the 
classes related to that function. Similarly, javax.datamining.algorithm is the base 
package for all algorithms and each algorithm has its sub-package under this package, 
for example, javax.datamining.algorithm.naivebayes is the sub-package for Naïve 
Bayes algorithm related classes. OJDM follows a similar package structure for the 
extensions, for example, feature extraction is a non-JDM standard function supported 
by the OJDM, here oracle.dmt.jdm.featureextraction is the package for this function 
and oracle.dmt.jdm.algorithm.nmf package for the Non-Negative Matrix 
Factorization algorithm used for feature extraction.

The JDM standard has some core packages that define common classes and packages 
for tasks, model details, rules and statistics. For more details refer to the JDM javadoc. 
The class diagram in Figure 7–1 illustrates the inheritance hierarchy of the named 
mining objects that are discussed in Chapter 2. In the subsequent sections more class 
diagrams are used to illustrate other OJDM objects. Note that the classes/interfaces 
shown in gray color are oracle JDM extension interfaces/classes. In Figure 7–1, 
oracle.dmt.jdm.transform.OraTransformationSequence is an Oracle extension to the 
mining objects defined in JDM 1.1 standard.

getMinorVersion Returns the minor version number. For the first release of JDM, this 
is "0".

getMinorVersion()
     returns int

getProviderName Returns the provider name as "Oracle Corporation".

getProviderName()
     returns String

getProviderVersion Returns the version of the Oracle Database that shipped the Oracle 
Data Mining Java API jar file.

getProviderVersion()
     returns String       

getProviderDMEVersion Returns the DME version of the provider

getProviderDMEVersion()
     returns String       

Method Description
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Figure 7–1 JDM Named Objects Class Diagram

Describing the Mining Data
The JDM standard defines physical and logical data objects to describe the mining 
attribute characteristics of the data as well as statistical computations for describing 
the data. 

The javax.datamining.data package contains all the data-related classes. The class 
diagram in Figure 7–2 illustrates the class relationships of the data objects supported 
by the Oracle Data Mining Java API. 

Figure 7–2 Data Objects in Oracle Data Mining Java API

The PhysicalDataSet object is used to specify the name and location of the dataset 
used for mining operations. For example, to represent a model build input dataset 
MINING_DATA_BUILD_V in a DMUSER schema account, PhysicalDataSet object is created 
with the data URI DMUSER.MINING_DATA_BUILD_V. The schema name prefix is optional 
when accessing the datasets in the same user account. 

Note that in the class diagram in Figure 7–2 a PhysicalDataSet can have 
PhysicalAttribute objects. A PhysicalAttribute represents physical characteristics 
of the columns of the input dataset; optionally physical attributes can specify the roles 
of the column. For example, in the MINING_DATA_BUILD_V dataset, CUST_ID uniquely 
identifies each case used for mining. So the role of the CUST_ID column is specified as 
case id. 

Example 7–2 illustrates the code sample that creates the PhysicalDataSet object. Note 
that the PhysicalDataSet object is saved with the name JDM_BUILD_PDS that can be 
specified as input to model build that we discuss later in "Build Settings" on page 7-9 

The PhysicalDataRecord object shown in Figure 7–2 is used to specify a single record 
of a dataset. It is used for single record apply that we will discuss in a later section of 
this Chapter. 



API Design Overview

The Data Mining Java API 7-9

The SignatureAttribute is used to specify the model signature of a mining model 
that will be discussed in later section of this Chapter.

In OJDM attribute data types are used to implicitly specify the mining attribute types. 
For example, all VARCHAR2 columns are treated as categorical and all NUMBER columns 
are treated as numerical. So there is no need to specify logical data details in OJDM. 
However, to rename attributes of a column, a user can specify the embedded 
transformations that are discussed in the next section.

Example 7–2 Creation of a Physical Dataset

//Create PhysicalDataSetFactory
PhysicalDataSetFactory pdsFactory = 
(PhysicalDataSetFactory)m_
dmeConn.getFactory("javax.datamining.data.PhysicalDataSet");
//Create a PhysicalDataSet object
PhysicalDataSet buildData = pdsFactory.create("DMUSER.MINING_DATA_BUILD_V", 
false);
//Create PhysicalAttributeFactory 
PhysicalAttributeFactory paFactory =
(PhysicalAttributeFactory)m_
dmeConn.getFactory("javax.datamining.data.PhysicalAttribute");
//Create PhysicalAttribute object
PhysicalAttribute pAttr = paFactory.create(
"cust_id", AttributeDataType.integerType, PhysicalAttributeRole.caseId );
//Add the attribute to the PhysicalDataSet object
buildData.addAtribute(pAttr);
//Save the physical data set object
dmeConn.saveObject("JDM_BUILD_PDS", buildData, true);

Build Settings
In the Oracle Data Mining Java API, the BuildSettings object is saved as a table in the 
database. The settings table is compatible with the DBMS_DATA_MINING.CREATE_MODEL 
procedure. The name of the settings table must be unique in the user's schema. 
Figure 7–3 illustrates the build settings class hierarchy.

Figure 7–3 Build Settings Class Diagram.

The code in Example 7–3 illustrates the creation and storing of a classification settings 
object with a tree algorithm.
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Example 7–3 Creation of a Classification Settings with Decision Tree Algorithm

//Create a classification settings factory
ClassificationSettingsFactory clasFactory = 
(ClassificationSettingsFactory)dmeConn.getFactory
     ("javax.datamining.supervised.classification.ClassificationSettings");
//Create a ClassificationSettings object
ClassificationSettings clas = clasFactory.create();
//Set target attribute name
clas.setTargetAttributeName("AFFINITY_CARD");
//Create a TreeSettingsFactory
TreeSettingsFactory treeFactory =
(TreeSettingsFactory)dmeConn.getFactory
     ("javax.datamining.algorithm.tree.TreeSettings");
//Create TreeSettings instance
TreeSettings treeAlgo = treeFactory.create();
treeAlgo.setBuildHomogeneityMetric(TreeHomogeneityMetric.entropy);
treeAlgo.setMaxDepth(10);
treeAlgo.setMinNodeSize( 10, SizeUnit.count );
//Set algorithm settings in the classification settings
clas.setAlgorithmSettings(treeAlgo);
//Save the build settings object in the database
dmeConn.saveObject("JDM_TREE_CLAS", clas, true);

Enable Automated Data Preparation
In 11.1, all mining algorithms support automated data preparations (ADP). By default 
for decision tree and GLM algorithms, ADP is enabled. For other algorithms it is 
disabled by default for backward compatibility reasons. To enable ADP explicitly for 
the algorithms that do not enable by default, invoke the following function, by 
specifying the useAutomatedDataPreparations boolean flag as true.

OraBuildSettings.useAutomatedDataPreparations
          (boolean useAutomatedDataPreparations)

For more information about automatic data preparation, see Oracle Data Mining 
Concepts.

Executing Mining Tasks
OJDM uses the DBMS_SCHEDULER infrastructure for executing mining tasks either 
synchronously or asynchronously in the database. A mining task is saved as a DBMS_
SCHEDULER job in the user schema and is set to DISABLED state. When user calls the 
execute method in DME Connection, the job state will be changed to ENABLED and 
scheduler starts executing the mining task by creating a new database session for 
asynchronous executions. For synchronous executions scheduler uses the same 
database session opened by the DME connection. 

The class diagram in Figure 7–4 illustrates the different types of tasks that are available 
in OJDM and its class hierarchy. Subsequent sections will discuss more about the 
individual tasks shown in this diagram
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Figure 7–4 Task Class Diagram

DBMS_SCHEDULER provides additional scheduling and resource management features. 
You can extend the capabilities of Oracle Data Mining tasks by using the Scheduler 
infrastructure. 

Creating Mining Task Workflows
In Oracle Data Mining 11.1, the task infrastructure supports applications to specify 
dependent tasks through the API and deploy the execution of the tasks to the database 
server. The server executes complete workflow of tasks specified through the API and 
once deployed it does not depend on client. Client can monitor the execution process 
using OJDM API. For example, typically after the completion of data preparations, 
model is built and then tested and applied. Both test and apply can be done in parallel 
after model build is successful. 

To build a task flow invoke the method OraTask.addDependency(String 
parentTaskName). For example, the code in Example 7–4 illustrates how to setup a 
mining task workflow, where first run the transformations task and then model build 
task. After successful completion of the build task run apply and test tasks in parallel. 

Example 7–4 Building Mining Task Workflows

//Task objects declarations
private TransformationTask xformTask;
private BuildTask buildTask;
private TestTask testTask;
private DataSetApplyTask applyTask;

See Also: Oracle Database Administrator's Guide for information 
about the database scheduler.
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//Creation of the tasks and task input objects are skipped for this example
…
//Save the first task in the workflow (the transformations task)
dmeConn.saveObject("transformationTask", xformTask, true);
//Specify dependencies before saving of the tasks
buildTask.addDependency("transformationTask");
dmeConn.saveObject("modelBuildTask", buildTask, true);
testTask.addDependency("modelBuildTask");
dmeConn.saveObject("modelTestTask", testTask, true);
applyTask.addDependency("modelBuildTask");
dmeConn.saveObject("modelApplyTask", applyTask, true);
//Execute the first task in the workflow to initiate the execution of the whole 
workflow
dmeConn.execute("transformationTask");

Building a Mining Model
The javax.datamining.task.BuildTask class is used to build a mining model. Prior to 
building a model, a PhysicalDataSet object and a BuildSettings object must be 
saved. 

Example 7–5 illustrates the building of a tree model using the PhysicalDataSet 
described in "Describing the Mining Data" on page 7-8 and the BuildSettings 
described in "Build Settings" on page 7-9.

Example 7–5 Building a Model

//Create BuildTaskFactory
BuildTaskFactory buildTaskFactory =
     dmeConn.getFactory("javax.datamining.task.BuildTask");
//Create BuildTask object
BuildTask buildTask = buildTaskFactory.create
     ( "JDM_BUILD_PDS","JDM_TREE_CLAS","JDM_TREE_MODEL"); 
//Save BuildTask object
dmeConn.saveObject("JDM_BUILD_TASK", buildTask, true);
//Execute build task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_BUILD_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Exploring Model Details
After building a model using the BuildTask, a model object is persisted in the 
database. It can be retrieved to explore the model details. 

The class diagram in Figure 7–5 illustrates the different types of model objects and 
model details objects supported by the Oracle Data Mining Java API.
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Figure 7–5 Model and Model Detail Class Diagram

Example 7–6 illustrates the retrieval of the classification tree model built in "Building a 
Mining Model" on page 7-12 and its TreeModelDetail.

Example 7–6 Retrieve Model Details

//Retrieve classification model from the DME
ClassificationModel treeModel = (ClassificationModel)dmeConn.retrieveObject
     ( "JDM_TREE_MODEL", NamedObject.model);
//Retrieve tree model detail from the model
TreeModelDetail treeDetail = (TreeModelDetail)treeModel.getModelDetail();
//Get the root node
TreeNode rootNode = treeDetail.getRootNode();
//Get child nodes
TreeNode[] childNodes = rootNode.getChildren();
//Get details of the first child node
int nodeId = childNodes[0].getIdentifier();
long caseCount = childNodes[0].getCaseCount();
Object prediction = childNodes[0].getPrediction();

Testing a Model
Once a supervised model has been built, it can be evaluated using a test operation. The 
JDM standard defines two types of test operations: one that takes the mining model as 
input, and the other that takes the apply output table with the actual and predicted 
value columns.
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javax.datamining.supervised.TestTask is the base class for the model- based test 
tasks, and javax.datamining.supervised.TestMetricsTask is the base class for the 
apply output table-based test tasks.

The test operation creates and persists a test metrics object in the DME. For 
classification model testing, either of the following can be used.

javax.datamining.supervised.classification.ClassificationTestTask
javax.datamining.supervised.classification.ClassificationTestMetricsTask

Both of these tasks create the named object 
javax.datamining.supervised.classification.ClassificationTestMetrics and 
store it as a table in the user's schema.

The classification test metrics components, confusion matrix, lift results, and ROC 
associated with the ClassificationTestMetrics object are stored in separate tables 
whose names are the ClassificationTestMetrics object name followed by the suffix 
_CFM, _LFT, or _ROC. These tables can be used to display test results in dashboards, BI 
platforms such as Oracle BI, Business Objects, and so on.

Similarly for regression model testing, either of the following can be used:

javax.datamining.supervised.regression.RegressionTestTask
javax.datamining.supervised.regression.RegressionTestMtericsTask

Both these tasks create a named object 
javax.datamining.supervised.regression.RegressionTestMetrics and store it as a 
table in the user's schema.

The class diagram in Figure 7–6 illustrates the test metrics class hierarchy. It refers to 
Figure 7–4, "Task Class Diagram" on page 7-11 for the class hierarchy of test tasks.

Figure 7–6 Test Metrics Class Hierarchy

Example 7–7 illustrates the test of a tree model JDM_TREE_MODEL using the 
ClassificationTestTask on the dataset MINING_DATA_TEST_V.

Example 7–7 Testing a Model

//Create & save PhysicalDataSpecification      
PhysicalDataSet testData = m_pdsFactory.create(
        "MINING_DATA_TEST_V", false );
PhysicalAttribute pa = m_paFactory.create("cust_id", 
        AttributeDataType.integerType, PhysicalAttributeRole.caseId );
testData.addAttribute( pa );
m_dmeConn.saveObject( "JDM_TEST_PDS", testData, true );
//Create ClassificationTestTaskFactory
ClassificationTestTaskFactory testTaskFactory =  
  (ClassificationTestTaskFactory)dmeConn.getFactory(
     "javax.datamining.supervised.classification.ClassificationTestTask");
//Create, store & execute Test Task
ClassificationTestTask testTask = testTaskFactory.create( 
        "JDM_TEST_PDS", "JDM_TREE_MODEL", "JDM_TREE_TESTMETRICS" );
testTask.setNumberOfLiftQuantiles(10);
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testTask.setPositiveTargetValue(new Integer(1));
//Save TestTask object
dmeConn.saveObject("JDM_TEST_TASK", testTask, true);
//Execute test task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_TEST_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);
//Explore the test metrics after successful completion of the task
if(ExecutionState.success.equals(execStatus.getState())) {
  //Retrieve the test metrics object
  ClassificationTestMetrics testMetrics =  
          (ClassificationTestMetrics)dmeConn.getObject("JDM_TREE_TESTMETRICS");
  //Retrieve confusion matrix and accuracy
  Double accuracy = testMetrics.getAccuracy();
  ConfusionMatrix cfm = testMetrics.getConfusionMatrix();
  //Retrieve lift 
  Lift lift = testMetrics.getLift();
  //Retrieve ROC
  ReceiverOperatingCharacterics roc = testMetrics.getROC();
}  

In Example 7–7, a test metrics object is stored as a table called JDM_TREE_TESTMETRICS. 
The confusion matrix is stored in the JDM_TREE_TESTMETRICS_CFM table, lift is stored in 
the JDB_TREE_TESTMETRICS_LFT table, and ROC is stored in the JDM_TREE_TESTMETRICS_
ROC table. You can use BI tools like Oracle Discoverer to query these tables and create 
reports.

Applying a Model for Scoring Data
All supervised models can be applied to data to find the prediction. Some of the 
unsupervised models, such as clustering and feature extraction, support the apply 
operation to find the cluster id or feature id for new records. 

The JDM standard API provides an ApplySettings object to specify the type of output 
for the scored results. javax.datamining.task.apply.ApplySettings is the base class 
for all apply settings. In the Oracle Data Mining Java API, the ApplySettings object is 
transient; it is stored in the Connection context, not in the database. 

The class diagram in Figure 7–7 illustrates the class hierarchy of the apply settings 
available in the Oracle Data Mining Java API. 

Figure 7–7 Apply Settings

In the Oracle Data Mining Java API, default apply settings produce the apply output 
table in fixed format. The list in Table 7–1 illustrates the default output formats for 
different functions.
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All types of apply settings support source and destination attribute mappings. For 
example, if the original apply table has customer name and age columns that need to 
be carried forward to the apply output table, it can be done by specifying the source 
destination mappings in the apply settings.

In the Oracle Data Mining Java API, classification apply settings support map by rank, 
top prediction, map by category, and map all predictions. Regression apply settings 
support map prediction value. Clustering apply settings support map by rank, map by 
cluster id, map top cluster, and map all clusters. Feature extraction apply settings 
support map by rank, map by feature id, map top feature, and map all features. 

Example 7–8 illustrates the applying of a tree model JDM_TREE_MODEL using 
ClassificationApplyTask on the dataset MINING_DATA_APPLY_V.

Example 7–8 Applying a Model

//Create & save PhysicalDataSpecification      
PhysicalDataSet applyData = m_pdsFactory.create( "MINING_DATA_APPLY_V", false );
PhysicalAttribute pa = m_paFactory.create("cust_id", 
        AttributeDataType.integerType, PhysicalAttributeRole.caseId );
applyData.addAttribute( pa );
m_dmeConn.saveObject( "JDM_APPLY_PDS", applyData, true );
//Create ClassificationApplySettingsFactory
ClassificationApplySettingsFactory applySettingsFactory =  
  (ClassificationApplySettingsFactory)dmeConn.getFactory(
     "javax.datamining.supervised.classification. ClassificationApplySettings");
//Create & save ClassificationApplySettings
ClassificationApplySettings clasAS = applySettingsFactory.create();
m_dmeConn.saveObject( "JDM_APPLY_SETTINGS", clasAS, true);
//Create DataSetApplyTaskFactory
DataSetApplyTaskFactory applyTaskFactory =  
  (DataSetApplyTaskFactory)dmeConn.getFactory(
     "javax.datamining.task.apply.DataSetApplyTask");
//Create, store & execute apply Task
DataSetApplyTask applyTask = m_dsApplyFactory.create(
        " JDM_APPLY_PDS ", "JDM_TREE_MODEL", " JDM_APPLY_SETTINGS ", 
        "JDM_APPLY_OUTPUT_TABLE");
//Save ApplyTask object
dmeConn.saveObject("JDM_APPLY_TASK", applyTask, true);
//Execute test task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_APPLY_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using a Cost Matrix
The class javax.datamining.supervised.classification.CostMatrix is used to 
represent the costs of the false positive and false negative predictions. It is used for 
classification problems to specify the costs associated with the false predictions.

Table 7–1 Default Output Formats for Different Functions

Mining Function

Classification without Cost Case ID Prediction Probability

Classification with Cost Case ID Prediction Probability Cost

Regression Case ID Prediction

Feature extraction Case ID Feature ID Value
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In the Oracle Data Mining Java API, cost matrix is supported in apply and test 
operations for all classification models. For the decision tree algorithm, a cost matrix 
can be specified at build time. For more information about cost matrix, see Oracle Data 
Mining Concepts. 

Example 7–9 illustrates how to create a cost matrix object where the target has two 
classes: YES (1) and NO (0). Suppose a positive (YES) response to the promotion 
generates $2 and the cost of the promotion is $1. Then the cost of misclassifying a 
positive responder is $2. The cost of misclassifying a non-responder is $1. 

Example 7–9 Creating a Cost Matrix

//Create category set factory & cost matrix factory
CategorySetFactory catSetFactory = (CategorySetFactory)m_dmeConn.getFactory(
      "javax.datamining.data.CategorySet" );
CostMatrixFactory costMatrixFactory = (CostMatrixFactory)m_dmeConn.getFactory(
      "javax.datamining.supervised.classification.CostMatrix");
//Create categorySet
CategorySet catSet = m_catSetFactory.create(AttributeDataType.integerType);
//Add category values
catSet.addCategory(new Integer(0), CategoryProperty.valid);
catSet.addCategory(new Integer(1), CategoryProperty.valid);
//create cost matrix
CostMatrix costMatrix = m_costMatrixFactory.create(catSet);
costMatrix.setCellValue(new Integer(0), new Integer(0), 0);
costMatrix.setCellValue (new Integer(1), new Integer(1), 0);
costMatrix.setCellValue (new Integer(0), new Integer(1), 2);
costMatrix.setCellValue (new Integer(1), new Integer(0), 1);
//Save cost matrix in the DME
dmeConn.saveObject("JDM_COST_MATRIX", costMatrix);

Using Prior Probabilities
Prior probabilities are used for classification problems if the actual data has a different 
distribution for target values than the data provided for the model build. A user can 
specify the prior probabilities in the classification function settings, using 
setPriorProbabilitiesMap. For more information about prior probabilities, see Oracle 
Data Mining Concepts.

Example 7–10 illustrates how to create a PriorProbabilities object, when the target 
has two classes: YES (1) and NO (0), and probability of YES is 0.05, probability of NO is 
0.95. 

Example 7–10 Creating Prior Probabilities

//Set target prior probabilities
Map priorMap = new HashMap();
priorMap.put(new Double(0), new Double(0.7));
priorMap.put(new Double(1), new Double(0.3));
buildSettings.setPriorProbabilitiesMap("affinity_card", priorMap);

Embedded Transformations
In 11.1, OJDM supports embedding transformations with the model metadata. When 
the transformations are embedded with the model, they are implicitly applied to apply 

Note: Priors are not supported with decision trees. 
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and test datasets. For example, user can embed a transformation that recodes the 
response attributes value representation from 1/0 to Yes/No; model uses this 
transformation when applying the model to the new data. 

Users can specify these transformations as SQL expressions or can use the OJDM 
transformations discussed in Section 2.13 and build a transformation sequence. 

In this section, the first example discusses the simple expression transformation using 
the oracle.dmt.jdm.transform.OraExpressionTransform class specified as input for 
model build. 

The second example illustrates how to build a sequence of complex transformations 
and persist them as a transformation sequence and embed them into the model.

Embed Single-Expression Transformations
Using OraTransformationFactory user can create transformation objects such as 
OraTransformationSequence, OraExpressionTransform, OraBinningTransform, 
OraNormalizationTransform and OraClippingTransform. 

In Example 7–11, we create an expression transform that defines a simple log 
transformation for age attribute, recode transformation for affinity_card attribute and 
explicit exclusion of original age attribute from the model build. The code illustrates 
using OJDM API how one can embed these simple SQL expression transformations 
with the model.

Example 7–11 Simple Expression Transformation

//Create OraTransformationFactory
OraTransformationFactory m_xformFactory = (OraTransformationFactory)m_
dmeConn.getFactory(
      "oracle.dmt.jdm.transform.OraTransformation" );
//Create OraExpressionTransform from the transformation factory
OraExpressionTransform exprXform = m_xformFactory.createExpressionTransform();
  //1) Specify log transformation of age attribute and create a new attribute call 
log_age
  //   that can be used for mining
  exprXform.addAttributeExpression("log_age", //Expression output attribute name
                                  "log(10, age) as log_age", //Expression
                                  "power(10, log_age)" //Reverse expression
                                  );
  //2) Recode 1/0 values of the affinity card attribute with the yes/no values and 
replace 
  //   existing attribute with the new recoded attribute
  exprXform.addAttributeExpression("affinity_card", //Expression output attribute 
name
                                  "CASE WHEN AFFINITY_CARD = 1 THEN 'YES' ELSE 
'NO' END ", 
                                  null //No explicit reverse expression
                                  );
  //3) Exclude age attribute from mining
  exprXform.addAttributeExpression("age", //Expression output attribute name
                                  null, //Specify expression as null 
                                //to exclude attribute from mining 
                                  null 
                                  );
//Create transformation sequence object using expression transformation
OraTransformationSequence xformSeq = m_xformFactory.createTransformationSequence(
        "MINING_DATA_BUILD_V", //Input table
        exprXform, //Expressions to be defined
        null //Output transformed view is specified as null as we are trying to 



API Design Overview

The Data Mining Java API 7-19

             //embed the transformations to the model
      );
//Save transformation sequence object
m_dmeConn.saveObject("simpleExprXForm_jdm", xformSeq, true);
//Create build Task  with transformation sequence
BuildTask buildTask = m_buildFactory.create(
                     "inputPDS", //Build data specification
                     "inputBuildSettings", //Mining function settings name
                     "outputModel" //Mining model name
                     );                          
//Specify transformation sequence as one of the input to enable embedding
//of the transformations defined in the sequence with the model
//In this example only expression transformations are specified
((OraBuildTask)buildTask).setTransformationSequenceName("simpleExprXForm_jdm");
//Save and execute the build task
... 
//After successful model build specified transformations are embedded with the 
model
//User can retrieve the transformation details that are embedded with the model by 
calling 
//the following function in OraModel
OraExpressionTransform modelExmbeededTransforms = 
                     ((OraModel)model). GetModelTransformations();

Embed Complex Sequence of Transformations
In the previous example, we explored how to embed simple SQL expression 
transformations for trivial business transformations. In this section we will detail how 
a complex transformation sequence can be built using OJDM and embed these with 
the model. 

OJDM 10.2 provides typical mining related individual transformations such as 
binning, normalization and outlier treatment (clipping). In 10.2 users have to maintain 
these transformations outside the modeling process and do the consistent 
transformations for the build, apply and test datasets outside the mining operations. 
This requires significant additional coding and maintenance of the transformation 
related objects by the end-user applications. 

With the model embedded transformations capability, users can embed even complex 
transformation sequences such as first add business transformations and new 
attributes using the expression transforms (as discussed in the previous example), 
second treat outliers with the user specified clipping definitions and lastly normalize 
the data with the user specified normalization technique. 

In OJDM new OraTransformationSequence object supports ability to specify sequence 
of transformations and convert these transformations into per attribute SQL 
expressions to embed them to the model. Example 7–12 illustrates using OJDM API 
how one can build a transformation sequence which uses the expression transform 
created in the previous example and extends it with the outlier and normalization data 
mining transformations and embed these complex transformation sequence with the 
model.

Example 7–12 Complex Sequence Transformations

//Create a list of transformations to be performed on the input mining data
List xformList = new ArrayList();
xfromList.add( exprXform );     //Expression transformation
xformList.add( clippingXform ); //Clipping transformation to treat outliers
xformList.add( normalizeXform );//Normalization transformation
//Create transformation sequence object using list of transformation
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OraTransformationSequence xformSeq = m_xformFactory.createTransformationSequence(
        "MINING_DATA_BUILD_V", //Input table
        xformList, //List of transformations
        null //Output transformed view is specified as null as we are trying to 
             //embed the transformations to the model
      );
//Save transformation sequence object
m_dmeConn.saveObject("complexXFormSeq_jdm", xformSeq, true);
//Create transformation task with the transformation sequence
OraTransformationTaskFactory m_xformTaskFactory = 
       (OraTransformationTaskFactory)m_dmeConn.getFactory(
                   "oracle.dmt.jdm.task.OraTransformationTask");         
OraTransformationTask xformTask =  m_xformTaskFactory .create(
                 "complexXFormSeq_jdm",,   
                 false //boolean flag useTransformDefinitionTables
                 );
//Save and execute transformation task to populate transformation sequence with 
the
//SQL expressions necessary before embedding them to the build task
. . . .
//Create build Task with transformation sequence
. . . .
((OraBuildTask)buildTask).setTransformationSequenceName("complexXFormSeq_jdm ");
//Save and execute the build task with the embedded transformations
... 

Note that in both the examples we specified the output view of the transformation 
sequence as null to avoid creation of the database view that includes the 
transformations in the sequence. However, one can specify the view name to create a 
database view with the transformations and use this view as input to the model build 
to maintain the transformations outside the modeling process. OJDM API provides 
flexibility for the applications to choose the approach that best fits the need.

Using Predictive Analytics Tasks: Predict, Explain, and Profile
OJDM has oracle.dmt.jdm.task.OraPredictTask, OraExplainTask and 
OraProfileTask for data mining novice users to get predictions, to explain attributes 
importance and to discover profiles from the data. 

Using OraPredictTask predictions are computed by just specifying the data location 
and the target column. This task learns from the known values in the target column 
and other columns in the input table and fills the unknown values in the target column 
with the predictions. This task hides all the data mining process done inside the 
database and produces the predictions and accuracy of the predictions.

Using OraExplainTask attributes ranking/importance with respect to an explain 
column. By just specifying the data location and explain column this task produces the 
attribute ranking table.

Using OraProfileTask profiles are discovered from the data for a given target 
attribute. For example, to find the profiles of the customers who respond to a product 
promotion, give the customers dataset with the customer attributes and promotion 
response attribute to the profile task. Profile task outputs a table with the profile 
definitions that applications can display to the users.

Both the tasks do automated data preparation where needed.

Example 7–13 illustrates how to execute predict, explain, and profile tasks.
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Example 7–13 Predictive Analytics

//Get Predictive Analytics Task Factory object
   OraPredictiveAnalyticsTaskFactory  m_paFactory =
     (OraPredictiveAnalyticsTaskFactory)m_dmeConn.getFactory(
          "oracle.dmt.jdm.task.OraPredictiveAnalyticsTask");
//Predict task
   //Create predict task object
   OraPredictTask predictTask = m_paFactory.createPredictTask (
                     "MINING_DATA_BUILD_V", //Input table
                     "cust_id", //Case id column
                     "affinity_card", //target column
                     "JDM_PREDICTION_RESULTS"); //prediction output table
   //Save predict task object
   dmeConn.saveObject("JDM_PREDICT_TASK", predictTask, true);
   //Execute test task asynchronously in the database
   ExecutionHandle execHandle1 = dmeConn.execute("JDM_PREDICT_TASK");
   //Wait for completion of the task
   ExecutionStatus execStatus1 = execHandle1.waitForCompletion(Integer.MAX_VALUE);                         
//Explain task
   //Create explain task object
   OraExplainTask explainTask = m_paFactory.createExplainTask (
                     "MINING_DATA_BUILD_V", //Input table
                     "affinity_card", //explain column
                     "JDM_EXPLAIN_RESULTS"); //explain output table
   //Save predict task object
   dmeConn.saveObject("JDM_EXPLAIN_TASK", explainTask, true);
   //Execute test task asynchronously in the database
   ExecutionHandle execHandle2 = dmeConn.execute("JDM_ EXPLAIN_TASK");
   //Wait for completion of the task
   ExecutionStatus execStatus2 = execHandle2.waitForCompletion(Integer.MAX_VALUE);                         
//Profile task
   //Create profile task 
    OraProfileTask profileTask = m_paFactory.createProfileTask(
                         "MINING_DATA_BUILD_V", //Input table
                         "affinity_card", //Target column
                                 "JDM_PROFILE_RESULTS); //Profile output table
   //Save predict task object
   dmeConn.saveObject("JDM_PROFILE_TASK", profileTask, true);
   //Execute test task asynchronously in the database
   ExecutionHandle execHandle3 = dmeConn.execute("JDM_PROFILE_TASK");
   //Wait for completion of the task
   ExecutionStatus execStatus3 = execHandle3.waitForCompletion(Integer.MAX_VALUE);

Preparing the Data
In the Oracle Data Mining Java API, data must be prepared before building, applying, 
or testing a model. The oracle.dmt.jdm.task.OraTransformationTask class supports 
common transformations used in data mining: binning, normalization, clipping, and 
text transformations. For more information about transformations, see Oracle Data 
Mining Concepts.

The class diagram in Figure 7–8 illustrates the OraTransformationTask and its 
relationship with other objects.
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Figure 7–8 OraTransformationTask Class Diagram

Using Binning/Discretization Transformation
Binning is the process of grouping related values together, thus reducing the number 
of distinct values for an attribute. Having fewer distinct values typically leads to a 
more compact model and one that builds faster, but it can also lead to some loss in 
accuracy.

The class diagram in Figure 7–9 illustrates the binning transformation classes.

Figure 7–9 OraBinningTransformation Class Diagram

Here, OraBinningTransformation contains all the settings required for binning. The 
Oracle Data Mining Java API supports top-n, custom binning for categorical attributes, 
and equi-width, quantile and custom binning for numerical attributes. After running 
the binning transformations, it creates a transformed table and bin boundary tables in 
the user's schema. The user can specify the bin boundary table names, or the system 
will generate the names for the bin boundary tables. This facilitates the reusing of the 
bin boundary tables that are created for binning build data for apply and test data.

The following code illustrates the binning operation on the view MINING_BUILD_DATA_
V

//Create binning transformation instance
OraBinningTransformFactory binXformFactory = 
   (OraBinningTransformFactory)dmeConn.getFactory(
      "oracle.dmt.jdm.transform.binning.OraBinningTransform");
OraBinningTransform binTransform = m_binXformFactory.create(
      "MINING_DATA_BUILD_V", // name of the input data set
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      "BINNED_DATA_BUILD_V", // name of the transformation result 
      true); // result of the transformation is a view  
// Specify the number of numeric bins
binTransform.setNumberOfBinsForNumerical(10);
// Specify the number of categoric bins
binTransform.setNumberOfBinsForCategorical(8);
// Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
binTransform.setExcludeColumnList(excludedList);
// Specify the type of numeric binning: equal-width or quantile
       ( default is quantile )
binTransform.setNumericalBinningType(binningType);
// Specify the type of categorical binning as Top-N: by default it is none   
binTransform.setCategoricalBinningType(OraCategoricalBinningType.top_n);
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(binTransform);
//Save transformation task object
dmeConn.saveObject("JDM_BINNING_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_ BINNING _TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE); 

Using Normalization Transformation
Normalizing converts individual attribute values in such a way that all attribute 
values lie in the same range. Normally, values are converted to be in the range 0.0 to 
1.0 or the range -1 to +1. Normalization ensures that attributes do not receive artificial 
weighting caused by differences in the ranges that they span.

The class diagram in Figure 7–10 illustrates the normalization transformation classes.

Figure 7–10 OraNormalizeTransformation Class Diagram

Here, OraNormalizeTransformation contains all the settings required for 
normalization. The Oracle Data Mining Java API supports z-Score, min-max, and 
linear scale normalizations. Normalization is required for SVM, NMF, and k-Means 
algorithms.

The following code illustrates normalization on the view MINING_BUILD_DATA_V.

//Create OraNormalizationFactory
OraNormalizeTransformFactory normalizeXformFactory = 
  (OraNormalizeTransformFactory)m_dmeConn.getFactory(
      "oracle.dmt.jdm.transform.normalize.OraNormalizeTransform");
//Create OraNormalization
OraNormalizeTransform normalizeTransform = m_normalizeXformFactory.create(
      "MINING_DATA_BUILD_V", // name of the input data set
      "NORMALIZED_DATA_BUILD_V", // name of the transformation result 
      true, // result of the transformation is a view
      OraNormalizeType.z_Score, //Normalize type
      new Integer(6) ); //Rounding number    
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// Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
normalizeTransform.setExcludeColumnList(excludedList);
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(normalizeTransform);
//Save transformation task object
dmeConn.saveObject("JDM_NORMALIZE_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_NORMALIZE_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using Clipping Transformation
Some computations on attribute values can be significantly affected by extreme values. 
One approach to achieving a more robust computation is to either winsorize or trim 
the data using clipping transformations.

Winsorizing involves setting the tail values of a particular attribute to some specified 
value. For example, for a 90% winsorization, the bottom 5% are set equal to the 
minimum value in the 6th percentile, while the upper 5% are set equal to the value 
corresponding to the maximum value in the 95th percentile.

Trimming "removes" the tails in the sense that trimmed values are ignored in further 
values. This is achieved by setting the tails to NULL.

The class diagram in Figure 7–11 illustrates the clipping transformation classes.

Figure 7–11 OraClippingTransformation Class Diagram

Here, OraClippingTransformation contains all the settings required for clipping. The 
Oracle Data Mining Java API supports winsorize and trim types of clipping.

The following code illustrates clipping on the view MINING_BUILD_DATA_V.

//Create OraClippingTransformFactory
OraClippingTransformFactory clipXformFactory = 
  (OraClippingTransformFactory)dmeConn.getFactory(
      "oracle.dmt.jdm.transform.clipping.OraClippingTransform");
//Create OraClippingTransform
OraClippingTransform clipTransform = clipXformFactory.create(
      "MINING_DATA_BUILD_V", // name of the input data set
      "WINSORISED_DATA_BUILD_V", // name of the transformation result 
      true );// result of the transformation is a view    
//Specify the list of excluded attributes
String[] excludedList = new String[]{"CUST_ID", "CUST_GENDER"};
clipTransform.setExcludeColumnList(excludedList);
//Specify the type of clipping
clipTransform.setClippingType(OraClippingType.winsorize);
// Specify the tail fraction as 3% of values on both ends
clipTransform.setTailFraction(0.03);
//Create and save transformation task
OraTransformationTask xformTask = xformTaskFactory.create(clipTransform);
//Save transformation task object
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dmeConn.saveObject("JDM_CLIPPING_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_CLIPPING_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion(Integer.MAX_VALUE);

Using Text Transformation
Text columns need to be transformed to nested table structure to do the mining on text 
columns. This transformation converts the text columns to nested table columns. A 
features table is created by text transformation. A model build text data column 
features table must be used for apply and test tasks to get the correct results.

The class diagram in Figure 7–12 illustrates the text transformation classes.

Figure 7–12 Text Transformation Class Diagram

Here, OraTextTransformation is used to specify the text columns and the feature 
tables associated with the text columns.

The following code illustrates clipping on the table MINING_BUILD_TEXT.

//Create OraTextTransformFactory
OraTextTransformFactory textXformFactory = dmeConn.getFactory(
      "oracle.dmt.jdm.transform.text.OraTextTransform");
//Create OraTextTransform
OraTextTransform txtXform = (OraTextTransformImpl)textXformFactory.create(
      "MINING_BUILD_TEXT", // name of the input data set
      "NESTED_TABLE_BUILD_TEXT ", // name of the transformation result
      "CUST_ID", //Case id column
      new String[] { "COMMENTS" } ); //Text column names 
      );
//Create transformation task
OraTransformationTask xformTask = m_xformTaskFactory.create(txtXform);
//Save transformation task object
dmeConn.saveObject("JDM_TEXTXFORM_TASK", xformTask, true);
//Execute transformation task asynchronously in the database
ExecutionHandle execHandle = dmeConn.execute("JDM_TEXTXFORM_TASK");
//Wait for completion of the task
ExecutionStatus execStatus = execHandle.waitForCompletion
     (Integer.MAX_VALUE);
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