

Oracle® Universal Connection Pool for JDBC
Developer’s Guide

11g Release 2 (11.2)

E12265-02

September 2009

This guide provides instructions for using Oracle's Universal
Connection Pooling API. The API is JDBC driver agnostic.

Oracle Universal Connection Pool for JDBC Developer's Guide, 11g Release 2 (11.2)

E12265-02

Copyright © 1999, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Tulika Das, Joseph Ruzzi

Contributor: Rajkumar Irudayaraj, Tong Zhou, Yuri Dolgov, Paul Lo, Kuassi Mensah

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface .. vii

Audience.. vii
Documentation Accessibility .. vii
Related Documents ... viii
Conventions ... viii

1 Introduction to UCP

Overview of Connection Pool.. 1-1
Benefits of Using Connection Pools... 1-1

Overview of Universal Connection Pool for JDBC ... 1-2
Conceptual Architecture ... 1-2
Connection Pool Properties .. 1-3
Connection Pool Manager... 1-3
High Availability and Performance Scenarios... 1-3

2 Getting Started

Requirements for using UCP ... 2-1
Basic Connection Steps in UCP ... 2-1
Basic Connection Example Using UCP .. 2-2
UCP for JDBC API Overview... 2-3

3 Getting Database Connections in UCP

Borrowing Connections from UCP ... 3-1
Using the Pool-Enabled Data Source .. 3-1
Using the Pool-Enabled XA Data Source.. 3-3
Setting Connection Properties.. 3-4
Using JNDI to Borrow a Connection... 3-4

Setting Connection Pool Properties for UCP .. 3-5
Validating Connections in UCP... 3-5

Validate When Borrowing .. 3-5
Checking If a Connection Is Valid ... 3-6

Returning Borrowed Connections to UCP .. 3-7
Removing Connections from UCP.. 3-7
Third-Party Integration ... 3-8

iv

4 Optimizing Universal Connection Pool Behavior

Overview of Optimizing Connection Pools.. 4-1
Controlling the Pool Size in UCP.. 4-2

Setting the Initial Pool Size ... 4-2
Setting the Minimum Pool Size.. 4-2
Setting the Maximum Pool Size ... 4-3

Controlling Stale Connections in UCP .. 4-3
Setting Connection Reuse ... 4-3

Setting the Maximum Connection Reuse Time .. 4-3
Setting the Maximum Connection Reuse Count .. 4-4

Setting the Abandon Connection Timeout... 4-4
Setting the Time-To-Live Connection Timeout ... 4-4
Setting the Connection Wait Timeout ... 4-5
Setting the Inactive Connection Timeout ... 4-5
Setting the Timeout Check Interval... 4-5

Harvesting Connections in UCP.. 4-6
Setting Whether a Connection is Harvestable ... 4-6
Setting the Harvest Trigger Count... 4-6
Setting the Harvest Maximum Count ... 4-7

Caching SQL Statements in UCP .. 4-7
Enabling Statement Caching .. 4-8

5 Labeling Connections in UCP

Overview of Labeling Connections in UCP.. 5-1
Implementing a Labeling Callback in UCP .. 5-2

Creating a Labeling Callback ... 5-2
An Example Labeling Callback... 5-3

Registering a Labeling Callback... 5-4
Removing a Labeling Callback... 5-4

Applying Connection Labels in UCP ... 5-4
Borrowing Labeled Connections from UCP ... 5-5
Checking Unmatched Labels in UCP ... 5-5
Removing a Connection Label from UCP ... 5-6

6 Controlling Reclaimable Connection Behavior

AbandonedConnectionTimeoutCallback.. 6-1
TimeToLiveConnectionTimeoutCallback ... 6-1

7 Using the Connection Pool Manager

Using the UCP Manager.. 7-1
Connection Pool Manager Overview.. 7-1
Creating a Connection Pool Manager ... 7-1
Controlling the Lifecycle of a Connection .. 7-2

Creating a Connection Pool... 7-2
Starting a Connection Pool .. 7-3
Stopping a Connection Pool .. 7-3

v

Destroying a Connection Pool .. 7-3
Performing Maintenance on a Connection Pool.. 7-3

Refreshing a Connection Pool ... 7-4
Recycling a Connection Pool ... 7-4
Purging a Connection Pool.. 7-4

Accessing JMX-based Management ... 7-5
UniversalConnectionPoolManagerMBean... 7-5
UniversalConnectionPoolMBean... 7-5

8 Using Oracle RAC Features

Overview of Oracle RAC Features .. 8-1
Using Fast Connection Failover... 8-2

Example Fast Connection Failover Configuration .. 8-3
Enabling Fast Connection Failover.. 8-4
Configuring ONS ... 8-4

Remote Configuration.. 8-4
Client-Side Daemon Configuration.. 8-5

Configuring the Connection URL.. 8-5
Using Run-Time Connection Load Balancing .. 8-6

Setting Up Run-Time Connection Load Balancing ... 8-7
Using Connection Affinity ... 8-7

Setting Up Connection Affinity.. 8-8
Creating a Connection Affinity Callback .. 8-9
Registering a Connection Affinity Callback... 8-10
Removing a Connection Affinity Callback... 8-10

9 Diagnosing a Connection Pool

Pool Statistics .. 9-1
Dynamic Monitoring Service Metrics .. 9-1
Viewing RAC Statistics ... 9-2

Fast Connection Failover Statistics .. 9-2
Run-Time Connection Load Balance Statistics .. 9-3
Connection Affinity Statistics... 9-3

Setting Up Logging in UCP .. 9-3
Using a Logging Properties File... 9-4
Using UCP for JDBC and JDK API .. 9-4
Supported Log Levels.. 9-4

Exceptions and Error Codes.. 9-5
General Structure of UCP Error Messages ... A-1
Connection Pool Layer Error Messages .. A-1
JDBC Data Sources and Dynamic Proxies Error Messages... A-5

Index

vi

vii

Preface

The Oracle Universal Connection Pool (UCP) for JDBC is a full-featured connection
pool for managing database connections. Java applications that are database-intensive
use the connection pool to improve performance and better utilize system resources.

The instructions in this guide detail how to use the UCP for JDBC API and cover a
wide range of use cases. The guide does not provide detailed information about using
Oracle JDBC Drivers, Oracle Database, or SQL except as required to understand UCP
for JDBC.

Audience
This guide is primarily written for Application Developers and System Architects who
want to learn how to use UCP for JDBC to create and manage database connections for
their Java applications. Users must be familiar with Java and JDBC to use this guide.
Knowledge of Oracle Database concepts (such as Oracle RAC and ONS) is required
when using some UCP for JDBC features.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

viii

Deaf/Hard of Hearing Access to Oracle Support Services
To reach Oracle Support Services, use a telecommunications relay service (TRS) to call
Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle
technical issues and provide customer support according to the Oracle service request
process. Information about TRS is available at
http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone
numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents
For more information about using Java with the Oracle Database, see the following
documents in the Oracle Database documentation set:

■ Oracle Database JDBC Developer's Guide

■ Oracle Database 2 Day + Java Developer's Guide

■ Oracle Database Java Developer's Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

1

Introduction to UCP 1-1

1Introduction to UCP

The following sections are included in this chapter:

■ Overview of Connection Pool

■ Overview of Universal Connection Pool for JDBC

Overview of Connection Pool
A connection pool is a cache of database connection objects. The objects represent
physical database connections that can be used by an application to connect to a
database. At run time, the application requests a connection from the pool. If the pool
contains a connection that can satisfy the request, it returns the connection to the
application. If no connections are found, a new connection is created and returned to
the application. The application uses the connection to perform some work on the
database and then returns the object back to the pool. The connection is then available
for the next connection request.

Connection pools promote the reuse of connection objects and reduce the number of
times that connection objects are created. Connection pools significantly improve
performance for database-intensive applications because creating connection objects is
costly both in terms of time and resources. Tasks such as network communication,
reading connection strings, authentication, transaction enlistment, and memory
allocation all contribute to the amount of time and resources it takes to create a
connection object. In addition, because the connections are already created, the
application waits less time to get the connection.

Connection pools often provide properties that are used to optimize the performance
of a pool. The properties control behaviors such as the minimum and maximum
number of connections allowed in the pool or the amount of time a connection can
remain idle before it is returned to the pool. The best configured connection pools
balance quick response times with the memory spent maintaining connections in the
pool. It is often necessary to try different settings until the best balance is achieved for
a specific application.

Benefits of Using Connection Pools
Applications that are database-intensive generally benefit the most from connection
pools. As a policy, applications should use a connection pool whenever database usage
is known to affect application performance.

Connection pools provide the following benefits:

■ Reduces the number of times new connection objects are created.

■ Promotes connection object reuse.

Overview of Universal Connection Pool for JDBC

1-2 Oracle Universal Connection Pool for JDBC Developer's Guide

■ Quickens the process of getting a connection.

■ Reduces the amount of effort required to manually manage connection objects.

■ Minimizes the number of stale connections.

■ Controls the amount of resources spent on maintaining connections.

Overview of Universal Connection Pool for JDBC
UCP for JDBC provides a connection pool implementation for caching JDBC
connections. Java applications that are database-intensive use the connection pool to
improve performance and better utilize system resources.

A UCP JDBC connection pool can use any JDBC driver to create physical connections
that are then maintained by the pool. The pool can be configured and provides a full
set of properties that are used to optimize pool behavior based on the performance
and availability requirements of an application. For more advanced applications, UCP
for JDBC provides a pool manager that can be used to manage a pool instance.

The pool also leverages many high availability and performance features available
through an Oracle Real Application Clusters (RAC) database. These features include
Fast Connection Failover (FCF), run-time connection load balancing, and connection
affinity.

Conceptual Architecture
Applications use a UCP for JDBC pool-enabled data source to get connections from a
UCP JDBC connection pool instance. The PoolDataSource data source is used for
getting regular connections (java.sql.Connection), and the PoolXADataSource
data source is used for getting XA connections (javax.sql.XAConnection). The
same pool features are included in both XA and non-XA UCP JDBC connection pools.

The pool-enabled data source relies on a connection factory class to create the physical
connections that are maintained by the pool. An application can choose to use any
factory class that is capable of creating Connection or XAConnection objects. The
pool-enabled data sources provide a method for setting the connection factory class, as
well as methods for setting the database URL and database credentials that are used
by the factory class to connect to a database.

Applications borrow a connection handle from the pool to perform work on a
database. Once the work is completed, the connection is closed and the connection
handle is returned to pool and is available to be used again. Figure 1–1 below shows
the conceptual view of the interaction between an application and a UCP JDBC
connection pool.

See Chapter 3, "Getting Database Connections in UCP," for more information on using
pool-enabled data sources and borrowing database connections.

Note: Starting from Oracle Database 11g Release 2 (11.2), FCF is also
supported by Oracle Restart on a single instance database. Oracle
Restart was previously known as Single-Instance High Availability
(SIHA). For more information on Oracle Restart, refer to Oracle
Database Administrator's Guide.

Overview of Universal Connection Pool for JDBC

Introduction to UCP 1-3

Figure 1–1 Conceptual View of a UCP JDBC Connection Pool

Connection Pool Properties
UCP JDBC Connection pool properties are configured through methods available on
the pool-enabled data source. The pool properties are used to control the pool size,
handle stale connections, and make autonomous decisions about how long
connections can remain borrowed before they are returned to the pool. The optimal
settings for the pool properties depend on the application and hardware resources.
Typically, there is a trade-off between the time it takes for an application to get a
connection versus the amount of memory it takes to maintain a certain pool size. In
many cases, experimentation is required to find the optimal balance to achieve the
desired performance for a specific application.

See Chapter 4, "Optimizing Universal Connection Pool Behavior," for more
information on setting connection pool properties.

Connection Pool Manager
UCP for JDBC includes a connection pool manager that is used by applications that
require administrative control over a connection pool. The manager is used to
explicitly control the lifecycle of a pool and to perform maintenance on a pool. The
manager also provides the opportunity for an application to expose the pool and its
manageability through an administrative console.

See Chapter 7, "Using the Connection Pool Manager," for more information on
explicitly controlling a connection pool.

High Availability and Performance Scenarios
A UCP JDBC connection pool provides many features that are used to ensure high
connection availability and performance. Many of these features, such as refreshing a
pool or validating connections, are generic and work across driver and database
implementations. Some of these features, such as run-time connection load balancing,
and connection affinity, require the use of an Oracle JDBC driver and an Oracle RAC
database.

See Chapter 8, "Using Oracle RAC Features," for more information on using Oracle
RAC features.

Overview of Universal Connection Pool for JDBC

1-4 Oracle Universal Connection Pool for JDBC Developer's Guide

2

Getting Started 2-1

2Getting Started

The following sections are included in this chapter:

■ Requirements for using UCP

■ Basic Connection Steps in UCP

■ Basic Connection Example Using UCP

■ UCP for JDBC API Overview

Requirements for using UCP
UCP for JDBC has the following design-time and run-time requirements:

■ JRE 1.5 or higher

■ A JDBC diver or a connection factory class capable of returning a
java.sql.Connection and javax.sql.XAConnection object

Oracle drivers from releases 10.1 or higher are supported. Advanced Oracle
Database features, such as Oracle RAC and Fast Connection Failover, require the
Oracle Notification Service library (ons.jar) that is included with the Oracle
Client software.

■ The ucp.jar library must be included in the classpath of an application.

■ A database that supports SQL. Advanced features, such as Oracle RAC and Fast
Connection Failover, require an Oracle Database.

Basic Connection Steps in UCP
UCP for JDBC provides a pool-enabled data source that is used by applications to
borrow connections from a UCP JDBC connection pool. A connection pool is not
explicitly defined for the most basic use case. Instead, a default connection pool is
implicitly created when the connection is borrowed.

The following steps describe how to get a connection from a UCP for JDBC
pool-enabled data source in order to access a database. The complete example is
provided in Example 2–1, "Basic Connection Example":

1. Use the UCP for JDBC data source factory
(oracle.ucp.jdbc.PoolDataSourceFactory) to get an instance of a
pool-enabled data source using the getPoolDataSource method. The data
source instance must be of the type PoolDataSource. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

Basic Connection Example Using UCP

2-2 Oracle Universal Connection Pool for JDBC Developer's Guide

2. Set the connection properties that are required to get a physical connection to a
database. These properties are set on the data source instance and include: the
URL, the user name, and password to connect to the database and the connection
factory used to get the physical connection. These properties are specific to a JDBC
driver and database. For example:

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

3. Set any pool properties in order to override the connection pool’s default behavior.
the pool properties are set on the data source instance. For example:

pds.setInitialPoolSize(5);

4. Get a connection using the data source instance. The returned connection is a
logical handle to a physical connection in the data source’s connection pool. For
example:

Connection conn = pds.getConnection();

5. Use the connection to perform some work on the database:

Statement stmt = conn.createStatement ();
stmt.execute("SELECT * FROM foo");

6. Close the connection and return it to the pool.

conn.close();

Basic Connection Example Using UCP
The following example is a program that connects to a database to do some work and
then exits. The example is simple and in some cases not very practical; however, it
does demonstrate the basic steps required to get a connection from a UCP for JDBC
pooled-enabled data source in order to access a database.

Example 2–1 Basic Connection Example

import java.sql.Connection;
import java.sql.SQLException;
import java.sql.Statement;
import oracle.ucp.jdbc.PoolDataSourceFactory;
import oracle.ucp.jdbc.PoolDataSource;

public class BasicConnectionExample {
 public static void main(String args[]) throws SQLException {
 try
 {
 //Create pool-enabled data source instance.

 PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

 //set the connection properties on the data source.

 pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
 pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
 pds.setUser("<user>");
 pds.setPassword("<password>");

UCP for JDBC API Overview

Getting Started 2-3

 //Override any pool properties.

 pds.setInitialPoolSize(5);

 //Get a database connection from the datasource.

 Connection conn = pds.getConnection();

 System.out.println("\nConnection obtained from " +
 "UniversalConnectionPool\n");

 //do some work with the connection.
 Statement stmt = conn.createStatement();
 stmt.execute("select * from foo");

 //Close the Connection.

 conn.close();
 conn=null;

 System.out.println("Connection returned to the " +
 "UniversalConnectionPool\n");

 }
 catch(SQLException e)
 {
 System.out.println("BasicConnectionExample - " +
 "main()-SQLException occurred : "
 + e.getMessage());
 }
 }
}

UCP for JDBC API Overview
The following section provides a quick overview of the most commonly used packages
of the UCP for JDBC API. Refer to the Oracle Universal Connection Pool Java API
Reference for complete details on the API.

oracle.ucp.jdbc
This package includes various interfaces and classes that are used by applications to
work with JDBC connections and a connection pool. Among the interfaces found in
this package, the PoolDataSource and PoolXADataSource data source interfaces
are used by an application to get connections as well as get and set connection pool
properties. Data source instances implementing these two interfaces automatically
create a connection pool.

oracle.ucp.admin
This package includes interfaces for using a connection pool manager as well as
MBeans that allow users to access connection pool and the connection pool manager
operations and attributes using JMX operations. Among the interfaces, the
UniversalConnectionPoolManager interface provides methods for creating and
maintaining connection pool instances.

UCP for JDBC API Overview

2-4 Oracle Universal Connection Pool for JDBC Developer's Guide

oracle.ucp
This package includes both required and optional callback interfaces that are used to
implement connection pool features. For example, the
ConnectionAffinityCallback interface is used to create a callback that enables or
disables connection affinity and can also be used to customize connection affinity
behavior. This package also contains statistics classes, UCP specific exception classes,
and the logic to use the UCP directly, without using data sources.

3

Getting Database Connections in UCP 3-1

3Getting Database Connections in UCP

The following sections are included in this chapter:

■ Borrowing Connections from UCP

■ Setting Connection Pool Properties for UCP

■ Validating Connections in UCP

■ Returning Borrowed Connections to UCP

■ Removing Connections from UCP

■ Third-Party Integration

Borrowing Connections from UCP
An application borrows connections using a pool-enabled data source. The UCP for
JDBC API provides two pool-enabled data sources; one for borrowing regular
connections; and one for borrowing XA connections. These data sources provide
access to UCP JDBC connection pool functionality and include a set of
getConnection methods that are used to borrow connections. The same pool
features are included in both XA and non-XA UCP JDBC connection pools.

UCP JDBC connection pools maintain both available connections and borrowed
connections. A connection is reused from the pool if an application requests to borrow
a connection that matches an available connection. A new connection is created if no
available connection in the pool match the requested connection. The number of
available connections and borrowed connections are subjected to pool properties such
as pool size, timeout intervals, and validation rules.

Using the Pool-Enabled Data Source
UCP for JDBC provides a pool-enabled data source
(oracle.ucp.jdbc.PoolDataSource) that is used to get connections to a
database. The oracle.ucp.jdbc.PoolDataSourceFactory factory class provides
a getPoolDataSource() method that creates the pool-enabled data source instance.
For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

Note: The instructions in this section use a pool-enabled data source
to implicitly create and start a connection pool. See Chapter 7, "Using
the Connection Pool Manager"for instructions on using the connection
pool manager to explicitly create a connection pool.

Borrowing Connections from UCP

3-2 Oracle Universal Connection Pool for JDBC Developer's Guide

The pool-enabled data source requires a connection factory class in order to get an
actual physical connection. The connection factory is typically provided as part of a
JDBC driver and can be a data source itself. A UCP JDBC connection pool can use any
JDBC driver to create physical connections that are then maintained by the pool. The
setConnectionFactoryClassName(String) method is used to define the
connection factory for the pool-enabled data source instance. The following example
uses Oracle’s oracle.jdbc.pool.OracleDataSource connection factory class
included with the JDBC driver. If you are using a different vendor’s JDBC driver, refer
to the vendor’s documentation for an appropriate connection factory class.

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");

In addition to the connection factory class, a pool-enabled data source requires the
URL, user name, and password that is used to connect to a database. A pool-enabled
data source instance includes methods to set each of these properties. The following
example uses an Oracle JDBC Thin driver syntax. If you are using a different vendor’s
JDBC driver, refer to the vendor’s documentation for the appropriate URL syntax to
use.

pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

Lastly, a pool-enabled data source provides a set of getConnection methods. The
methods include:

■ getConnection() – Returns a connection that is associated with the user name
and password that was used to connect to the database.

■ getConnection(String username, String password) – Returns a
connection that is associated with the given user name and password.

■ getConnection(java.util.Properties labels) – Returns a connection
that matches a given label. See Chapter 5, "Labeling Connections in UCP," for
detailed information on using connection labels.

■ getConnection(String username, String password,
java.util.Properties labels) – Returns a connection that is associated
with a given user name and password and that matches a given label. See
Chapter 5, "Labeling Connections in UCP," for detailed information on using
connection labels.

An application uses the getConnection methods to borrow a connection handle
from the pool that is of the type java.sql.Connection. If a connection handle is
already in the pool that matches the requested connection (same URL, user name, and
password) then it is returned to the application; or else, a new connection is created
and a new connection handle is returned to the application. An example for both
Oracle and MySQL are provided.

Oracle Example
The following example demonstrates borrowing a connection when using Oracle’s
JDBC Thin driver:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

Note: See the Oracle Database JDBC Developer's Guide for detailed
Oracle URL syntax usage.

Borrowing Connections from UCP

Getting Database Connections in UCP 3-3

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

Connection conn = pds.getConnection();

MySQL Example
The following example demonstrates borrowing a connection when using the
Connector/J JDBC driver from MySQL:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("com.mysql.jdbc.jdbc2.optional.
 MysqlDataSource");
pds.setURL("jdbc:mysql://host:3306/dbname");
pds.setUser("<user>");
pds.setPassword("<password>");

Connection conn = pds.getConnection();

Using the Pool-Enabled XA Data Source
UCP for JDBC provides a pool-enabled XA data source
(oracle.ucp.jdbc.PoolXADataSource) that is used to get XA connections that
can be enlisted in a distributed transaction. UCP JDBC XA pools have the same
features as non-XA UCP JDBC pools. The
oracle.ucp.jdbc.PoolDataSourceFactory factory class provides a
getPoolXADataSource() method that creates the pool-enabled XA data source
instance. For example:

PoolXADataSource pds = PoolDataSourceFactory.getPoolXADataSource();

A pool-enabled XA data source instance, like a non-XA data source instance, requires
the connection factory, URL, user name, and password in order to get an actual
physical connection. These properties are set in the same way as a non-XA data source
instance (see above). However, an XA-specific connection factory class is required to
get XA connections. The XA connection factory is typically provided as part of a JDBC
driver and can be a data source itself. The following example uses Oracle’s
oracle.jdbc.xa.client.OracleXADataSource XA connection factory class
included with the JDBC driver. If a different vendor’s JDBC driver is used, refer to the
vendor’s documentation for an appropriate XA connection factory class.

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

Lastly, a pool-enabled XA data source provides a set of getXAConnection methods
that are used to borrow a connection handle from the pool that is of the type
javax.sql.XAConnection. The getXAConnection methods are the same as the
getConnection methods previously described. The following example demonstrates
borrowing an XA connection.

PoolXADataSource pds = PoolDataSourceFactory.getPoolXADataSource();

Borrowing Connections from UCP

3-4 Oracle Universal Connection Pool for JDBC Developer's Guide

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

XAConnection conn = pds.getXAConnection();

Setting Connection Properties
Oracle’s connection factories support properties that configure connections with
specific features. UCP for JDBC pool-enabled data sources provide the
setConnectionProperties(Properties) method, which is used to set
properties on a given connection factory. The following example demonstrates setting
connection properties for Oracle’s JDBC driver. If you are using a different vendor’s
JDBC driver, refer to their documentation to check whether setting properties in this
manner is supported and what properties are available:

Properties connProps = new Properties();
connProps.put("fixedString", false);
connProps.put("remarksReporting", false);
connProps.put("restrictGetTables", false);
connProps.put("includeSynonyms", false);
connProps.put("defaultNChar", false);
connProps.put("AccumulateBatchResult", false);

pds.setConnectionProperties(connProps);

The UCP JDBC connection pool does not remove connections that are already created
if setConnectionProperties is called after the pool is created and in use.

Using JNDI to Borrow a Connection
A connection can be borrowed from a connection pool by performing a JNDI look up
for a pool-enabled data source and then calling getConnection() on the returned
object. The pool-enabled data source must first be bound to a JNDI context and a
logical name. This assumes that an application includes a Service Provider Interface
(SPI) implementation for a naming and directory service where object references can
be registered and located.

The following example uses Sun’s file system JNDI service provider, which can be
downloaded from the JNDI software download page:

 http://java.sun.com/products/jndi/downloads/index.html

The example demonstrates creating an initial context and then performing a lookup
for a pool-enabled data source that is bound to the name MyPooledDataSource. The
object returned is then used to borrow a connection from the connection pool.

Hashtable env = new Hashtable();
env.put(Context.INITIAL_CONTEXT_FACTORY,
 "com.sun.jndi.fscontext.RefFSContextFactory");
env.put(Context.PROVIDER_URL, "file:/tmp");

ctx = new InitialContext(env);

Note: See the Oracle Database JDBC Developer's Guide for a detailed
list of supported properties.

Validating Connections in UCP

Getting Database Connections in UCP 3-5

PoolDataSource jpds = (PoolDataSource)ctx.lookup(MyPooledDataSource);
Connection conn = jpds.getConnection();

In the example, MyPoolDataSource must be bound to the context. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

ctx.bind(MyPooledDataSource, pds);

Setting Connection Pool Properties for UCP
UCP JDBC connection pools are configured using connection pool properties. The
properties have get and set methods that are available through a pool-enabled data
source instance. The methods are a convenient way to programmatically configure a
pool. If no pool properties are set, then a connection pool uses default property values.

The following example demonstrates configuring connection pool properties. The
example sets the connection pool name and the maximum/minimum number of
connections allowed in the pool. See Chapter 4, "Optimizing Universal Connection
Pool Behavior," for a detailed description of all the supported properties as well as
their default values.

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);
pds.setMaxPoolSize(20);

UCP JDBC connection pool properties may be set in any order and can be dynamically
changed at runtime. For example, setMaxPoolSize could be changed at any time
and the pool recognizes the new value and adapts accordingly.

Validating Connections in UCP
Connections can be validated using pool properties when the connection is borrowed,
and also programmatically using the ValidConnection interface. Both approaches
are detailed in this section. Invalid connections can affect application performance and
availability.

Validate When Borrowing
A connection can be validated by executing an SQL statement on a connection when
the connection is borrowed from the connection pool. Two connection pool properties
are used in conjunction in order to enable connection validation:

■ setValidateConnectionOnBorrow(boolean) – Specifies whether or not
connections are validated when the connection is borrowed from the connection
pool. The method enables validation for every connection that is borrowed from
the pool. A value of false means no validation is performed. The default value is
false.

Validating Connections in UCP

3-6 Oracle Universal Connection Pool for JDBC Developer's Guide

■ setSQLForValidateConnection(String) – Specifies the SQL statement that
is executed on a connection when it is borrowed from the pool.

The following example demonstrates validating a connection when borrowing the
connection from the pool. The example uses Connector/J JDBC driver from MySQL:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionFactoryClassName("com.mysql.jdbc.jdbc2.optional.
 MysqlDataSource");
pds.setURL("jdbc:mysql://host:3306/mysql");
pds.setUser("<user>");
pds.setPassword("<password>");

pds.setValidateConnectionOnBorrow(true);
pds.setSQLForValidateConnection("select * from mysql.user");

Connection conn = pds.getConnection();

Checking If a Connection Is Valid
The oracle.ucp.jdbc.ValidConnection interface provides two methods:
isValid and setInvalid. The isValid method returns whether or not a
connection is usable and the setInvalid method is used to indicate that a
connection should be removed from the pool instance. See "Removing Connections
from UCP" on page 3-7 for more information on using the setInvalid method.

The isValid method is used to check if a connection is still usable after an SQL
exception has been thrown. This method can be used at any time to check if a
borrowed connection is valid. The method is particularly useful in combination with a
retry mechanism, such as the Fast Connection Failover actions that are triggered after a
RAC-down event. See Chapter 8, "Using Oracle RAC Features," for more information
on Fast Connection Failover.

The isValid method is also helpful when used in conjunction with the connection
timeout and connection harvesting features. These features may return a connection to
the pool while a connection is still held by an application. In such cases, the isValid
method returns false, allowing the application to get a new connection.

Note: The setSQLForValidateConnection property is not
recommended when using an Oracle JDBC driver. UCP for JDBC
performs an internal ping when using an Oracle JDBC driver. The
mechanism is faster than executing an SQL statement and is
overridden if this property is set. Instead, set the
setValidateConnectionOnBorrow property to true and do not
include the setSQLForValidateConnection property.

Note: The isValid method checks with the pool instance and
Oracle JDBC driver to determine whether a connection is still valid.
The isValid method results in a roundtrip to the database only if
both the pool and the driver report that a connection is still valid. The
roundtrip is used to check for database failures that are not
immediately discovered by the pool or the driver.

Removing Connections from UCP

Getting Database Connections in UCP 3-7

The following example demonstrates using the isValid method:

try
{
 conn = poolDataSouorce.getConnection
 ...
}
catch (SQLException sqlexc)
{
 if (conn == null || !((ValidConnection) conn).isValid())

 // take the appropriate action

...
conn.close();
}

Returning Borrowed Connections to UCP
Borrowed connections that are no longer being used should be returned to the pool so
that they can be available for the next connection request. The close method is used
to close connections and automatically returns the connections to the pool. The close
method does not physically remove the connection from the pool.

Borrowed connections that are not closed will remain borrowed; subsequent requests
for a connection result in a new connection being created if no connections are
available. This behavior can cause many connections to be created and can affect
system performance.

The following example demonstrates closing a connection and returning it to the pool:

Connection conn = pds.getConnection();

//do some work with the connection.

conn.close();
conn=null;

Removing Connections from UCP
The setInvalid method of the ValidConnection interface indicates that a
connection should be removed from the connection pool when it is closed. The method
is typically used when a connection is no longer usable, such as after an exception or if
the isValid method of the ValidConnection interface returns false. The method
can also be used if an application deems the state on a connection to be bad. The
following example demonstrates using the setInvalid method to close and remove
a connection from the pool:

Connection conn = pds.getConnection();
...

((ValidConnection) conn).setInvalid();
...

conn.close();
conn=null;

Third-Party Integration

3-8 Oracle Universal Connection Pool for JDBC Developer's Guide

Third-Party Integration
Third-party products, such as middleware platforms or frameworks, can use UCP to
provide connection pooling functionality for their applications and services. UCP
integration includes the same connection pool features that are available to
stand-alone applications and offers the same tight integration with the Oracle
Database.

Two data source classes are available as integration points with UCP:
PoolDataSourceImpl for non-XA connection pools and PoolXADataSourceImpl
for XA connection pools. Both classes are located in the oracle.ucp.jdbc package.
These classes are implementations of the PoolDataSource and PoolXADataSource
interfaces, respectively, and contain default constructors. For more information on the
implementation classes refer to the Oracle Universal Connection Pool Java API Reference.

These implementations explicitly create connection pool instances and can return
connections. For example:

PoolXADataSource pds = new PoolXADataSourceImpl();

pds.setConnectionFactoryClassName("oracle.jdbc.xa.client.OracleXADataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("user");
pds.setPassword("password");

XAConnection conn = pds.getXAConnection();

Third-party products can instantiate these data source implementation classes. In
addition, the methods of these interfaces follow the JavaBean design pattern and can
be used to set connection pool properties on the class using reflection. For example, a
UCP data source that uses an Oracle JDBC connection factory and database might be
defined as follows and loaded into a JNDI registry:

<data-sources>
 <data-source
 name="UCPDataSource"
 jndi-name="jdbc/UCP_DS"
 data-source-class="oracle.ucp.jdbc.PoolDataSourceImpl">
 <property name="ConnectionFactoryClassName"
 value="oracle.jdbc.pool.OracleDataSource"/>
 <property name="URL" value="jdbc:oracle:thin:@//localhost:1521:oracle"/>
 <property name="User" value"user"/>
 <property name="Password" value="password"/>
 <property name="ConnectionPoolName" value="MyPool"/>
 <property name="MinPoolSize" value="5"/>
 <property name="MaxPoolSize" value="50"/>
 </data-source>
</data-sources>

When using reflection, the name attribute matches (case sensitive) the name of the
setter method used to set the property. An application could then use the data source
as follows:

Connection connection = null;
try {
 InitialContext context = new InitialContext();
 DataSource ds = (DataSource) context.lookup("jdbc/UCP_DS");
 connection = ds.getConnection();
 ...

4

Optimizing Universal Connection Pool Behavior 4-1

4Optimizing Universal Connection Pool
Behavior

The following sections are included in this chapter:

■ Overview of Optimizing Connection Pools

■ Controlling the Pool Size in UCP

■ Controlling Stale Connections in UCP

■ Harvesting Connections in UCP

■ Caching SQL Statements in UCP

Overview of Optimizing Connection Pools
This chapter provides instructions for setting connection pool properties in order to
optimize pooling behavior. Upon creation, UCP JDBC connection pools are
pre-configured with a default setup. The default setup provides a general, all-purpose
connection pool. However, different applications may have different database
connection requirements and may want to modify the default behavior of the
connection pool. Behaviors, such as pool size and connection timeouts can be
configured and can improve overall connection pool performance as well as
connection availability. In many cases, the best way to tune a connection pool for a
specific application is to try different property combinations using different values
until optimal performance and throughput is achieved.

Setting Connection Pool Properties
Connection pool properties are set either when getting a connection through a
pool-enabled data source or when creating a connection pool using the connection
pool manager.

The following example demonstrates setting connection pool properties though a
pool-enabled data source:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);
pds.setMaxPoolSize(20);
...

The following example demonstrates setting connection pool properties when creating
a connection pool using the connection pool manager:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.

Controlling the Pool Size in UCP

4-2 Oracle Universal Connection Pool for JDBC Developer's Guide

getUniversalConnectionPoolManager();

pds.setConnectionPoolName("JDBC_UCP");
pds.setMinPoolSize(4);
pds.setMaxPoolSize(20);
...

mgr.createConnectionPool(pds);

Controlling the Pool Size in UCP
UCP JDBC connection pools include a set of properties that are used to control the size
of the pool. The properties allow the number of connections in the pool to increase and
decrease as demand increases and decreases. This dynamic behavior helps conserve
system resources that are otherwise lost on maintaining unnecessary connections.

Setting the Initial Pool Size
The initial pool size property specifies the number of available connections that are
created when the connection pool is initially created or re-initialized. This property is
typically used to reduce the ramp-up time incurred by priming the pool to its optimal
size.

A value of 0 indicates that no connections are pre-created. The default value is 0. The
following example demonstrates configuring an initial pool size:

pds.setInitialPoolSize(5);

If the initial pool size property is greater than the maximum pool size property, then
only the maximum number of connections are initialized.

If the initial pool size property is less than the minimum pool size property, then only
the initial number of connections are initialized and maintained until enough
connections are created to meet the minimum pool size value.

Setting the Minimum Pool Size
The minimum pool size property specifies the minimum amount of available and
borrowed connections that a pool maintains. A connection pool always tries to return
to the minimum pool size specified unless the minimum amount has yet to be reached.
For example, if the minimum limit is set to 10 and only 2 connections are ever created
and borrowed, then the number of connections maintained by the pool remains at 2.

This property allows the number of connections in the pool to decrease as demand
decreases. At the same time, the property ensures that system resources are not wasted
on maintaining connections that are unnecessary.

The default value is 0. The following example demonstrates configuring a minimum
pool size:

pds.setMinPoolSize(2);

Tip: UCP JDBC connection pool properties may be set in any order
and can be dynamically changed at runtime. For example,
setMaxPoolSize could be changed after the pool is created and the
pool recognizes the new value and adapts accordingly.

Controlling Stale Connections in UCP

Optimizing Universal Connection Pool Behavior 4-3

Setting the Maximum Pool Size
The maximum pool size property specifies the maximum number of available and
borrowed (in use) connections that a pool maintains. If the maximum number of
connections are borrowed, no connections will be available until a connection is
returned to the pool.

This property allows the number of connections in the pool to increase as demand
increases. At the same time, the property ensures that the pool doesn’t grow to the
point of exhausting a system’s resources, which ultimately affects an application’s
performance and availability.

A value of 0 indicates that no connections are maintained by the pool. An attempt to
get a connection results in an exception. The default value is to allow the pool to
continue to create connections up to Integer.MAX_VALUE (2147483647 by default).
The following example demonstrates configuring a maximum pool size:

pds.setMaxPoolSize(100);

Controlling Stale Connections in UCP
Stale connections are connections that remain either available or borrowed, but are no
longer being used. Stale connections that remain borrowed may affect connection
availability. In addition, stale connections may impact system resources that are
otherwise wasted on maintaining unused connections for extended periods of time.
The pool properties discussed in this section are used to control stale connections.

Setting Connection Reuse
The connection reuse feature allows connections to be gracefully closed and removed
from a connection pool after a specific amount of time or after the connection has been
used a specific number of times. This feature saves system resources that are otherwise
wasted on maintaining unusable connections.

Setting the Maximum Connection Reuse Time
The maximum connection reuse time allows connections to be gracefully closed and
removed from the pool after a connection has been in use for a specific amount of time.
The timer for this property starts when a connection is physically created. Borrowed
connections are closed only after they are returned to the pool and the reuse time has
been exceeded.

This feature is typically used when a firewall exists between the pool tier and the
database tier and is setup to block connections based on time restrictions. The blocked
connections remain in the pool even though they are unusable. In such scenarios, the
connection reuse time is set to a smaller value than the firewall timeout policy.

Note: It is good practice to close all connections that are no longer
required by an application. Closing connections helps minimize the
number of stale connections that remain borrowed.

Controlling Stale Connections in UCP

4-4 Oracle Universal Connection Pool for JDBC Developer's Guide

The maximum connection reuse time value represents seconds. A value of 0 indicates
that this feature is disabled. The default value is 0. The following example
demonstrates configuring a maximum connection reuse time:

pds.setMaxConnectionReuseTime(300);

Setting the Maximum Connection Reuse Count
The maximum connection reuse count allows connections to be gracefully closed and
removed from the connection pool after a connection has been borrowed a specific
number of times. This property is typically used to periodically recycle connections in
order to eliminate issues such as memory leaks.

A value of 0 indicates that this feature is disabled. The default value is 0. The
following example demonstrates configuring a maximum connection reuse count:

pds.setMaxConnectionReuseCount(100);

Setting the Abandon Connection Timeout
The abandoned connection timeout enables borrowed connections to be reclaimed
back into the connection pool after a connection has not been used for a specific
amount of time. Abandonment is determined by monitoring calls to the database. This
timeout feature helps maximize connection reuse and conserves system resources that
are otherwise lost on maintaining borrowed connections that are no longer in use.

The abandoned connection timeout value represents seconds. A value of 0 indicates
that the feature is disabled. The default value is set to 0. The following example
demonstrates configuring an abandoned connection timeout:

pds.setAbandonConnectionTimeout(10);

Setting the Time-To-Live Connection Timeout
The time-to-live connection timeout enables borrowed connections to remain
borrowed for a specific amount of time before the connection is reclaimed by the pool.
This timeout feature helps maximize connection reuse and helps conserve systems

Note: The maximum connection reuse time is different from the
time-to-live connection timeout. The time-to-live connection timeout
starts when a connection is borrowed from the pool; while, the
maximum connection reuse time starts when the connection is
physically created. In addition, with a time-to-live timeout, a
connection is closed and returned to the pool for reuse if the timeout
expires during the borrowed period. With maximum connection reuse
time, a connection is closed and discarded from the pool after the
timeout expires. See Setting the Time-To-Live Connection Timeout.

Note: UCP for JDBC either cancels or rolls back connections that
have local transactions pending before reclaiming connections for
reuse.

Controlling Stale Connections in UCP

Optimizing Universal Connection Pool Behavior 4-5

resources that are otherwise lost on maintaining connections longer than their
expected usage.

The time-to-live connection timeout value represents seconds. A value of 0 indicates
that the feature is disabled. The default value is set to 0. The following example
demonstrates configuring a time-to-live connection timeout:

pds.setTimeToLiveConnectionTimeout(18000)

Setting the Connection Wait Timeout
The connection wait timeout specifies how long an application request waits to obtain
a connection if there are no longer any connections in the pool. A connection pool runs
out of connections if all connections in the pool are being used (borrowed) and if the
pool size has reached it’s maximum connection capacity as specified by the maximum
pool size property. The request receives an SQL exception if the timeout value is
reached. The application can then retry getting a connection. This timeout feature
improves overall application usability by minimizing the amount of time an
application is blocked and provides the ability to implement a graceful recovery.

The connection wait timeout value represents seconds. A value of 0 indicates that the
feature is disabled. The default value is set to 3 seconds. The following example
demonstrates configuring a connection wait timeout:

pds.setConnectionWaitTimeout(10);

Setting the Inactive Connection Timeout
The inactive connection timeout specifies how long an available connection can remain
idle before it is closed and removed from the pool. This timeout property is only
applicable to available connections and does not affect borrowed connections. This
property helps conserve resources that are otherwise lost on maintaining connections
that are no longer being used. The inactive connection timeout (together with the
maximum pool size) allows a connection pool to grow and shrink as application load
changes.

The inactive connection timeout value represents seconds. A value of 0 indicates that
the feature is disabled. The default value is set to 0. The following example
demonstrates configuring an inactive connection timeout:

pds.setInactiveConnectionTimeout(60);

Setting the Timeout Check Interval
The timeout check interval property controls how frequently the timeout properties
(abandoned connection timeout, time-to-live connection timeout, and inactive
connection timeout) are enforced. Connections that have timed-out are reclaimed
when the timeout check cycle runs. This means that a connection may not actually be
reclaimed by the pool at the moment that the connection times-out. The lag time

Note: UCP for JDBC either cancels or rolls back connections that
have local transactions pending before reclaiming connections for
reuse.

Harvesting Connections in UCP

4-6 Oracle Universal Connection Pool for JDBC Developer's Guide

between the connection timeout and actually reclaiming the connection may be
considerable depending on the size of the timeout check interval.

The timeout check interval property represents seconds. The default value is set to 30.
The following example demonstrates configuring a property check interval:

pds.setTimoutCheckInterval(60);

Harvesting Connections in UCP
The connection harvesting feature allows a specified number of borrowed connections
to be reclaimed when the connection pool reaches a specified number of available
connections. This feature helps ensure that a certain number of connections are always
available in the pool and helps maximize performance. The feature is particularly
useful if an application caches connection handles. Caching is typically performed for
performance reasons because it minimizes re-initialization of state necessary for
connections to participate in a transaction.

For example, a connection is borrowed from the pool, initialized with necessary
session state, and then held in a context object. Holding connections in this manner
may cause the connection pool to run out of available connections. The connection
harvest feature reclaims the borrowed connections, if appropriate, and allows the
connections to be reused.

Connection harvesting is controlled using the HarvestableConnection interface
and configured or enabled using two pool properties: Connection Harvest Trigger
Count and Connection Harvest Maximum Count. The interface and properties are
used together when implementing the connection harvest feature.

Setting Whether a Connection is Harvestable
The setConnectionHarvestable(boolean) method of the
oracle.ucp.jdbc.HarvestableConnection interface controls whether or not a
connection will be harvested. This method is used as a locking mechanism when
connection harvesting is enabled. For example, the method is set to false on a
connection when the connection is being used within a transaction and must not be
harvested. After the transaction completes, the method is set to true on the
connection and the connection can be harvested if required.

The following example demonstrates using the setConnectionHarvestable
method to indicate that a connection is not harvestable when the connection harvest
feature attempts to harvest connections:

Connection conn = pds.getConnection();

((HarvestableConnection) conn).setConnectionHarvestable(false);

Setting the Harvest Trigger Count
The connection harvest trigger count specifies the available connection threshold that
triggers connection harvesting. For example, if the connection harvest trigger count is

Note: All connections are harvestable, by default, when the
connection harvest feature is enabled. If the feature is enabled, the
setConnectionHarvestable method should always be used to
explicitly control whether a connection is harvestable.

Caching SQL Statements in UCP

Optimizing Universal Connection Pool Behavior 4-7

set to 10, then connection harvesting is triggered when the number of available
connections in the pool drops to 10.

A value of Integer.MAX_VALUE (2147483647 by default) indicates that connection
harvesting is disabled. The default value is Integer.MAX_VALUE.

The following example demonstrates enabling connection harvesting by configuring a
connection harvest trigger count.

pds.setConnectionHarvestTriggerCount(2);

Setting the Harvest Maximum Count
The connection harvest maximum count property specifies how many borrowed
connections should be returned to the pool once the harvest trigger count has been
reached. The number of connections actually harvested may be anywhere from 0 to the
connection harvest maximum count value. Least recently used connections are
harvested first which allows very active user sessions to keep their connections the
most.

The harvest maximum count value can range from 0 to the maximum connection
property value. The default value is 1. An SQLException is thrown if an out-of-range
value is specified.

The following example demonstrates configuring a connection harvest maximum
count.

pds.setConnectionHarvestMaxCount(5);

Caching SQL Statements in UCP
Statement caching makes working with statements more efficient. Statement caching
improves performance by caching executable statements that are used repeatedly and
makes it unnecessary for programmers to explicitly reuse prepared statements.
Statement caching eliminates overhead due to repeated cursor creation, repeated
statement parsing and creation and reduces overhead of communication between
applications and the database. Statement caching and reuse is transparent to an
application. Each statement cache is associated with a physical connection. That is,
each physical connection will have its own statement cache.

The match criteria for cached statements are as follows:

Note:

■ If connection harvesting and abandoned connection timeout
features are enabled at the same time, then the timeout processing
does not reclaim the connections that are designated as
nonharvestable.

■ If connection harvesting and time-to-live connection timeout
features are enabled at the same time, then the timeout processing
reclaims the connections that are designated as nonharvestable.

For more information about abandoned connection timeout feature
and time-to-live connection timeout feature, refer to Chapter 6.

Caching SQL Statements in UCP

4-8 Oracle Universal Connection Pool for JDBC Developer's Guide

■ The SQL string in the statement must be the same (case-sensitive) to one in the
cache.

■ The statement type must be the same (prepared or callable) to the one in the
cache.

■ The scrollable type of result sets produced by the statement must be the same
(forward-only or scrollable) as the one in the cache.

Statement caching is implemented and enabled differently depending on the JDBC
driver vendor. The instructions in this section are specific to Oracle’s JDBC driver.
Statement caching on other vendors’ drivers can be configured by setting a connection
property on a connection factory. See "Setting Connection Properties" on page 3-4 for
information on setting connection properties. In addition, refer to the JDBC vendor’s
documentation to determine whether statement caching is supported and if it can be
set as a connection property. UCP for JDBC does support JDBC 4.0 (JDK16) APIs to
enable statement pooling if a JDBC vendor supports it.

Enabling Statement Caching
The maximum number of statements property specifies the number of statements to
cache for each connection. The property only applies to the Oracle JDBC driver. If the
property is not set, or if it is set to 0, then statement caching is disabled. By default,
statement caching is disabled. When statement caching is enabled, a statement cache is
associated with each physical connection maintained by the connection pool. A single
statement cache is not shared across all physical connections.

The following example demonstrates enabling statement caching:

pds.setMaxStatements(10);

Determining the Statement Cache Size
The cache size should be set to the number of distinct statements the application issues
to the database. If the number of statements that an application issues to the database
is unknown, use the JDBC performance metrics to assist with determining the
statement cache size.

Statement Cache Size Resource Issues
Each connection is associated with its own statement cache. Statements held in a
connection's statement cache may hold on to database resources. It is possible that the
number of opened connections combined with the number of cached statements for
each connection could exceed the limit of open cursors allowed for the database. This
issue may be avoided by reducing the number of statements allowed in the cache, or
by increasing the limit of open cursors allowed by the database.

5

Labeling Connections in UCP 5-1

5Labeling Connections in UCP

The following sections are included in this chapter:

■ Overview of Labeling Connections in UCP

■ Implementing a Labeling Callback in UCP

■ Applying Connection Labels in UCP

■ Borrowing Labeled Connections from UCP

■ Checking Unmatched Labels in UCP

■ Removing a Connection Label from UCP

Overview of Labeling Connections in UCP
Applications often initialize connections retrieved from a connection pool before using
the connection. The initialization varies and could include simple state re-initialization
that requires method calls within the application code or database operations that
require round trips over the network. The cost of such initialization may be significant.

Labeling connections allows an application to attach arbitrary name/value pairs to a
connection. The application can request a connection with the desired label from the
connection pool. By associating particular labels with particular connection states, an
application can retrieve an already initialized connection from the pool and avoid the
time and cost of re-initialization. The connection labeling feature does not imposes any
meaning on user-defined keys or values; the meaning of user-defined keys and values
is defined solely by the application.

Some of the examples for connection labeling include, role, NLS language settings,
transaction isolation levels, stored procedure calls, or any other state initialization that
is expensive and necessary on the connection before work can be executed by the
resource.

Connection labeling is application-driven and requires the use of two interfaces. The
oracle.ucp.jdbc.LabelableConnection interface is used to apply and remove
connection labels, as well as retrieve labels that have been set on a connection. The
oracle.ucp.ConnectionLabelingCallback interface is used to create a labeling
callback that determines whether or not a connection with a requested label already
exists. If no connections exist, the interface allows current connections to be configured
as required. The methods of these interfaces are described in detail throughout this
chapter.

Implementing a Labeling Callback in UCP

5-2 Oracle Universal Connection Pool for JDBC Developer's Guide

Implementing a Labeling Callback in UCP
A labeling callback is used to define how the connection pool selects labeled
connections and allows the selected connection to be configured before returning it to
an application. Applications that use the connection labeling feature must provide a
callback implementation.

A labeling callback is used when a labeled connection is requested but there are no
connections in the pool that match the requested labels. The callback determines which
connection requires the least amount of work in order to be re-configured to match the
requested label and then allows the connection’s labels to be updated before returning
the connection to the application.

Creating a Labeling Callback
To create a labeling callback, an application implements the
oracle.ucp.ConnectionLabelingCallback interface. One callback is created
per connection pool. The interface provides two methods as shown below:

public int cost(Properties requestedLabels, Properties currentLabels);

public boolean configure(Properties requestedLabels, Connection conn);

■ cost – This method projects the cost of configuring connections considering
label-matching differences. Upon a connection request, the connection pool uses
this method to select a connection with the least configuration cost.

■ configure – This method is called by the connection pool on the selected
connection before returning it to the application. The method is used to set the
state of the connection and apply or remove any labels to/from the connection.

The connection pool iterates over each connection available in the pool. For each
connection, it calls the cost method. The result of the cost method is an integer
which represents an estimate of the cost required to reconfigure the connection to the
required state. The larger the value, the costlier it is to reconfigure the connection. The
connection pool always returns connections with the lowest cost value. The algorithm
is as follows:

■ If the cost method returns 0 for a connection, the connection is a match. The
connection pool calls configure on the connection found and returns the
connection.

■ If the cost method returns a value greater than 0, then the connection pool
iterates until it finds a connection with a cost value of 0 or runs out of available
connections.

■ If the pool has iterated through all available connections and the lowest cost of a
connection is Integer.MAX_VALUE (2147483647 by default), then no connection
in the pool is able to satisfy the connection request. The pool creates and returns a
new connection. If the pool has reached the maximum pool size (it cannot create a
new connection), then the pool either throws an SQL exception or waits if the
connection wait timeout attribute is specified.

■ If the pool has iterated through all available connections and the lowest cost of a
connection is less than Integer.MAX_VALUE, then the configure method is
called on the connection and the connection is returned. If multiple connections
are less than Integer.MAX_VALUE, the connection with the lowest cost is
returned.

Implementing a Labeling Callback in UCP

Labeling Connections in UCP 5-3

An Example Labeling Callback
The following example demonstrates a simple labeling callback implementation that
implements both the cost and configure methods. The callback is used to find a
labeled connection that is initialized with a specific transaction isolation level.

class MyConnectionLabelingCallback
 implements ConnectionLabelingCallback {

 public MyConnectionLabelingCallback()
 {
 }

 public int cost(Properties reqLabels, Properties currentLabels)
 {
 // Case 1: exact match
 if (reqLabels.equals(currentLabels))
 {
 System.out.println("## Exact match found!! ##");
 return 0;
 }

 // Case 2: some labels match with no unmatched labels
 String iso1 = (String) reqLabels.get("TRANSACTION_ISOLATION");
 String iso2 = (String) currentLabels.get("TRANSACTION_ISOLATION");
 boolean match =
 (iso1 != null && iso2 != null && iso1.equalsIgnoreCase(iso2));
 Set rKeys = reqLabels.keySet();
 Set cKeys = currentLabels.keySet();
 if (match && rKeys.containsAll(cKeys))
 {
 System.out.println("## Partial match found!! ##");
 return 10;
 }

 // No label matches to application's preference.
 // Do not choose this connection.
 System.out.println("## No match found!! ##");
 return Integer.MAX_VALUE;
 }

 public boolean configure(Properties reqLabels, Object conn)
 {
 try
 {
 String isoStr = (String) reqLabels.get("TRANSACTION_ISOLATION");
 ((Connection)conn).setTransactionIsolation(Integer.valueOf(isoStr));
 LabelableConnection lconn = (LabelableConnection) conn;

 // Find the unmatched labels on this connection
 Properties unmatchedLabels =
 lconn.getUnmatchedConnectionLabels(reqLabels);

 // Apply each label <key,value> in unmatchedLabels to conn
 for (Map.Entry<Object, Object> label : unmatchedLabels.entrySet())
 {

Note: A cost of 0 does not imply that requestedLabels equals
currentLabels.

Applying Connection Labels in UCP

5-4 Oracle Universal Connection Pool for JDBC Developer's Guide

 String key = (String) label.getKey();
 String value = (String) label.getValue();
 lconn.applyConnectionLabel(key, value);
 }
 }
 catch (Exception exc)
 {
 return false;
 }
 return true;
 }
}

Registering a Labeling Callback
A pool-enabled data source provides the
registerConnectionLabelingCallback(ConnectionLabelingCallback
callback) method for registering labeling callbacks. Only one callback may be
registered on a connection pool. The following example demonstrates registering a
labeling callback that is implemented in the MyConnectionLabelingCallback
class:

MyConnectionLabelingCallback callback = new MyConnectionLabelingCallback();
pds.registerConnectionLabelingCallback(callback);

Removing a Labeling Callback
A pool-enabled data source provides the
removeConnectionLabelingCallback() method for removing a labeling
callback. The following example demonstrates removing a labeling callback.

pds.removeConnectionLabelingCallback(callback);

Applying Connection Labels in UCP
Labels are applied on a borrowed connection using the applyConnectionLabel
method from the LabelableConnection interface. This method is typically called
from the configure method of the labeling callback. Any number of connection
labels may be cumulatively applied on a borrowed connection. Each time a label is
applied to a connection, the supplied key/value pair is added to the collection of
labels already applied to the connection. Only the last applied value is retained for any
given key.

The following example demonstrates initializing a connection with a transaction
isolation level and then applying a label to the connection:

String pname = "property1";
String pvalue = "value";
Connection conn = pds.getConnection();

Note: A labeling callback must be registered on the connection pool
before a label can be applied on a borrowed connection; otherwise, an
exception is thrown. See "Implementing a Labeling Callback in UCP"
on page 5-2.

Checking Unmatched Labels in UCP

Labeling Connections in UCP 5-5

// initialize the connection as required.

conn.setTransactionIsolation(Connection.TRANSACTION_SERIALIZABLE);

((LabelableConnection) conn).applyConnectionLabel(pname, pvalue);

In order to remove a given key from the set of connection labels applied, apply a label
with the key to be removed and a null value. This may be used to clear a particular
key/value pair from the set of connection labels.

Borrowing Labeled Connections from UCP
A pool-enabled data source provides two getConnection methods that are used to
borrow a labeled connection from the pool. The methods are shown below:

public Connection getConnection(java.util.Properties labels)
 throws SQLException;

public Connection getConnection(String user, String password,
 java.util.Properties labels)
 throws SQLException;

The methods require that the label be passed to the getConnection method as a
Properties object. The following example demonstrates getting a connection with
the label property1, value.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);

Connection conn = pds.getConnection(label);

Checking Unmatched Labels in UCP
A connection may have multiple labels that each uniquely identifies the connection
based on some desired criteria. The getUnmatchedConnectionLabels method is
used to verify which connection labels matched from the requested labels and which
did not. The method is used after a connection with multiple labels is borrowed from
the connection pool and is typically used by a labeling callback. The following
example demonstrates checking for unmatched labels.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);

Connecion conn = pds.getConnection(label);
Properties unmatched = ((LabelableConnection)
 connection).getUnmatchedConnectionLabels (label);

Removing a Connection Label from UCP

5-6 Oracle Universal Connection Pool for JDBC Developer's Guide

Removing a Connection Label from UCP
The removeConnectionLabel method is used to remove a label from a connection.
This method is used after a labeled connection is borrowed from the connection pool.
The following example demonstrates removing a connection label.

String pname = "property1";
String pvalue = "value";
Properties label = new Properties();
label.setProperty(pname, pvalue);
Connection conn = pds.getConnection(label);
((LabelableConnection) conn).removeConnectionLabel(pname);

6

Controlling Reclaimable Connection Behavior 6-1

6Controlling Reclaimable Connection
Behavior

This chapter describes the following interfaces:

■ AbandonedConnectionTimeoutCallback

■ TimeToLiveConnectionTimeoutCallback

AbandonedConnectionTimeoutCallback
The AbandonedConnectionTimeoutCallback callback interface is used for the
abandoned connection timeout feature. This feature enables applications to provide
customized handling of abandoned connections.

The callback object either uses one of its logical connection proxies or it is registered
with each pooled connection. This enables applications to perform customized
handling, when a particular connection is deemed abandoned by the pool. The
handleTimedOutConnection method is invoked when a borrowed connection is
deemed abandoned by the Universal Connection Pool. Applications can perform one
of the following operations on the connection:

■ Completely override the pool-handling process

■ Invoke additional handling actions

■ Assume the default pool-handling

The JDBC applications can invoke cancel, close, and rollback methods on the
abandoned connection within the handleTimedOutConnection method.

TimeToLiveConnectionTimeoutCallback
The TimeToLiveConnectionTimeoutCallback callback interface used for the
time-to-live (TTL) connection timeout feature. This enables applications to provide
customized handling for TTL timed-out connections.

Note: If you try to register more than one
AbandonedConnectionTimeoutCallback interface on the same
connection, then it results in an exception. This exception can be a
UniversalConnectionPoolException at the pool layer or a
java.sql.SQLException, specific to the type of the UCP Adapter
like JDBC, JCA and so on.

TimeToLiveConnectionTimeoutCallback

6-2 Oracle Universal Connection Pool for JDBC Developer's Guide

The callback object either uses one of its logical connection proxies or it is registered
with each pooled connection. This enables applications to perform customized
handling, when the TTL of the particular connection times out.

The handleTimedOutConnection method is invoked when a borrowed connection
is found to be TTL timed-out by the Universal Connection Pool. Applications can
perform one of the following operations on the connection:

■ Completely override the pool-handling process

■ Invoke additional handling actions

■ Assume the default pool-handling

The JDBC applications can invoke cancel, close, and rollback methods on the
abandoned connection within the handleTimedOutConnection method.

Note: If you try to register more than one
TimeToLiveConnectionTimeoutCallback interface on the same
connection, then it results in an exception. This exception can be a
UniversalConnectionPoolException at the pool layer or a
java.sql.SQLException, specific to the type of the UCP Adapter
like JDBC, JCA, and so on.

7

Using the Connection Pool Manager 7-1

7Using the Connection Pool Manager

The following sections are included in this chapter:

■ Using the UCP Manager

■ Accessing JMX-based Management

Using the UCP Manager
The Universal Connection Pool (UCP) manager creates and maintains UCP instances.
A pool instance is registered with the pool manager every time a new pool is created.
This section covers the following topics:

■ Connection Pool Manager Overview

■ Creating a Connection Pool Manager

■ Controlling the Lifecycle of a Connection

■ Performing Maintenance on a Connection Pool

Connection Pool Manager Overview
Applications use a connection pool manager to explicitly create and manage UCP
JDBC connection pools. Applications use the manager because it offers full lifecycle
control, such as creating, starting, stopping, and destroying a connection pool.
Applications also use the manager to perform routine maintenance on the connection
pool, such as refreshing, recycling, and purging connections in a pool. Lastly,
applications use the connection pool manager because it offers a centralized
integration point for administrative tools and consoles.

Creating a Connection Pool Manager
A connection pool manager is an instance of the
UniversalConnectionPoolManager interface, which is located in the
oracle.ucp.admin package. The manager is a Singleton instance that is used to
manage multiple connection pools per JVM. The interface includes methods for
interacting with a connection pool manager. UCP for JDBC includes an
implementation that is used to get a connection pool manager instance. The following
example demonstrates creating a connection pool manager instance using the
implementation:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

Using the UCP Manager

7-2 Oracle Universal Connection Pool for JDBC Developer's Guide

Controlling the Lifecycle of a Connection
Applications use the connection pool manager to explicitly control the lifecycle of
connection pools. The manager is used to create, start, stop, and destroy connection
pools. Lifecycle methods are included as part of the
UniversalConnectionPoolManager interface.

Understanding Lifecycle States
The lifecycle states of a connection pool affects what manager operations can be
performed on a connection pool. Applications that explicitly control the lifecycle of a
pool must ensure that the manager’s operations are used only when the pool is in an
appropriate state. Lifecycle constraints are discussed throughout this section.

The following list describes the lifecycle states of a pool:

■ Starting – Indicates that the connection pool's start method has been called and it
is in the process of starting up.

■ Running – Indicates that the connection pool has been started and is ready to give
out connections.

■ Stopping – Indicates that the connection pool is in the process of stopping.

■ Stopped – Indicates that the connection pool is stopped.

■ Failed – Indicates that the connection pool has encountered failures during
starting, stopping, or execution.

Creating a Connection Pool
The manager’s CreateConnectionPool method creates and registers a connection
pool. The manager uses a connection pool adapter to create the pool and relies on a
pool-enabled data source to configure the pool’s properties. A connection pool name
must be defined as part of the configuration and provides a way to refer to specific
pools when interacting with the manager. A connection pool name must be unique
and cannot be used by more than one connection pool.

The following example demonstrates creating a connection pool instance when using a
manager:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
pds.setConnectionPoolName("mgr_pool");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin:@//localhost:1521/XE");
pds.setUser("<user>");
pds.setPassword("<password>");

mgr.createConnectionPool((UniversalConnectionPoolAdapter)pds);

An application does not have to use the manager to create a pool in order for the pool
to be managed. A pool that is implicitly created (that is, automatically created when
using a pool-enabled data source) and configured with a pool name is automatically
registered and managed by the pool manager. Oracle recommends implicit pool
creation.9

Using the UCP Manager

Using the Connection Pool Manager 7-3

Starting a Connection Pool
The manager’s startConnectionPool method starts a connection pool using the
pool name as a parameter to determine which pool to start. The pool name is defined
as a pool property on a pool-enabled data source.

The following example demonstrates starting a connection pool:

mgr.startConnectionPool("mgr_pool");

An application must always create a connection pool using the manager’s
createConnectionPool method prior to starting the pool. In addition, a lifecycle
state exception occurs if an application attempts to start a pool that has been
previously started or if the pool is in a state other than stopped or failed.

Stopping a Connection Pool
The manager’s stopConnectionPool method stops a connection pool using the
pool name as a parameter to determine which pool to stop. The pool name is defined
as a pool property on the pool-enabled data source. Stopping a connection pool closes
all available and borrowed connections.

The following example demonstrates stopping a connection pool:

mgr.stopConnectionPool("mgr_pool");

An application can use the manager to stop a connection pool that was started
implicitly or explicitly. An error occurs if an application attempts to stop a pool that
does not exist or if the pool is in a state other than started or starting.

Destroying a Connection Pool
The manager’s destroyConnectionPool method stops a connection pool and
removes it from the connection pool manager. A pool name is used as a parameter to
determine which pool to destroy. The pool name is defined as a pool property on the
pool-enabled data source.

The following example demonstrates destroying a connection pool:

mgr.destroyConnectionPool("mgr_pool");

An application cannot start a connection pool that has been destroyed and must
explicitly create and start a new connection pool.

Performing Maintenance on a Connection Pool
Applications use the connection pool manager to perform maintenance on a
connection pool. Maintenance includes refreshing, recycling, and purging a connection
pool. The maintenance methods are included as part of the
UniversalConnectionPoolManager interface.

Maintenance is typically performed to remove and replace invalid connections and
ensures a high availability of valid connections. Invalid connections typically cannot
be used to connect to a database but are still maintained by the pool. These

Note: The manager throws an exception if a connection pool already
exists with the same name. An application must not implicitly start a
connection pool before using the createConnectionPool method
to explicitly create the same pool.

Using the UCP Manager

7-4 Oracle Universal Connection Pool for JDBC Developer's Guide

connections waste system resources and directly affect a pool’s maximum connection
limit. Ultimately, too many invalid connections negatively affects an applications
performance.

Refreshing a Connection Pool
Refreshing a connection pool replaces every connection in the pool with a new
connection. Any connections that are currently borrowed are marked for removal and
refreshed after the connection is returned to the pool. The manager’s
refreshConnectionPool method refreshes a connection pool using the pool name
as a parameter to determine which pool to refresh. The pool name is defined as a pool
property on the pool-enabled data source.

The following example demonstrates refreshing a connection pool:

mgr.refreshConnectionPool("mgr_pool");

Recycling a Connection Pool
Recycling a connection pool replaces only invalid connection in the pool with a new
connection and does not replace borrowed connections. The manager’s
recycleConnectionPool method recycles a connection pool using the pool name
as a parameter to determine which pool to recycle. The pool name is defined as a pool
property on the pool-enabled data source.

The setSQLForValidateConnection property must be set when using non-Oracle
drivers. UCP for JDBC uses this property to determine whether or not a connection is
valid before recycling the connection. See "Validating Connections in UCP" for more
information on using the setSQLForValidateConnection property.

The following example demonstrates recycling a connection pool:

mgr.recycleConnectionPool("mgr_pool");

Purging a Connection Pool
Purging a connection pool removes every connection (available and borrowed) from
the connection pool and leaves the connection pool empty. Subsequent requests for a
connection result in a new connection being created. The manager’s
purgeConnectionPool method purges a connection pool using the pool name as a
parameter to determine which pool to purge. The pool name is defined as a pool
property on the pool-enabled data source.

The following example demonstrates purging a connection pool:

mgr.purgeConnectionPool("mgr_pool");

Note: Applications can check whether or not a connection is valid
when borrowing the connection from the pool. See "Validating
Connections in UCP" on page 3-5 for detailed information. If an
application consistently has a high number of invalid connections,
additional testing should be performed to determine the cause.

Note: Connection pool properties, such as minPoolSize and
initialPoolSize, may not be enforced after a connection pool is
purged.

Accessing JMX-based Management

Using the Connection Pool Manager 7-5

Accessing JMX-based Management
JMX (Java Management Extensions) is a Java technology that supplies tools for
managing and monitoring applications, system objects, devices, service-oriented
networks, and JVM (Java Virtual Machine). This API allows its classes to be
dynamically constructed and changed. So, you can use this technology to monitor and
manage resources as they are created, installed, and implemented. The JMX API also
includes remote access, so a remote management program can interact with a running
application for these purposes.

In JMX, a given resource is instrumented by one or more Java objects known as
MBeans (Managed Beans). These MBeans are registered in a core managed object
server, known as an MBean server, that acts as a management agent and can run on
most devices enabled for the Java programming language. A JMX agent consists of an
MBean server, in which MBeans are registered, and a set of services for handling
MBeans.

All MBean attributes and operations are available only when the
UniversalConnectionPoolManager.isJmxEnabled method returns true. The
default value of this flag is true. This default value can be altered by calling the
UniversalConnectionPoolManager.setJmxEnabled method. When an
MBeanServer is not available, the jmxFlag is automatically set to false.

UCP provides the following two MBeans for pool management support:

■ UniversalConnectionPoolManagerMBean

■ UniversalConnectionPoolMBean

UniversalConnectionPoolManagerMBean
The UniversalConnectionPoolManagerMBean is a manager MBean that includes
all the functionalities of a conventional connection pool manager. The
UniversalConnectionPoolManagerMBean provides the following functionalities:

■ Registering and unregistering pool MBeans

■ Pool management operations like starting the pool, stopping the pool, refreshing
the pool, and so on

■ Starting and stopping DMS statistics

■ Logging

UniversalConnectionPoolMBean
The UniversalConnectionPoolMBean is a pool MBean that covers dynamic
configuration of pool properties and pool statistics. The
UniversalConnectionPoolMBean provides the following functionalities:

■ Configuring pool property attributes like size, timeouts, and so on

■ Pool management operations like refreshing the pool, recycling the pool, and so on

■ Monitoring pool statistics and lifecycle states

See Also: Oracle Universal Connection Pool for JDBC Java API Reference

Accessing JMX-based Management

7-6 Oracle Universal Connection Pool for JDBC Developer's Guide

8

Using Oracle RAC Features 8-1

8Using Oracle RAC Features

The following sections are included in this chapter:

■ Overview of Oracle RAC Features

■ Using Fast Connection Failover

■ Using Run-Time Connection Load Balancing

■ Using Connection Affinity

Overview of Oracle RAC Features
UCP JDBC connection pools provide a tight integration with various Oracle Real
Application Clusters (RAC) Database features. The features include Fast Connection
Failover (FCF), Run-Time Connection Load Balancing, and Connection Affinity. These
features require the use of an Oracle JDBC driver, Oracle RAC database, and the
Oracle Notification Service library (ons.jar) that is included with the Oracle Client
software. For those new to these technologies, refer to the Oracle Real Application
Clusters Administration and Deployment Guide and the Oracle Database JDBC Developer's
Guide.

Applications use Oracle RAC features to maximize connection performance and
availability and to mitigate down-time due to connection problems. Applications have
different availability and performance requirements and should implement Oracle
RAC features accordingly.

Generic High Availability and Performance Features
The UCP for JDBC APIs and connection pool properties include many high availability
and performance features that do not require an Oracle RAC database. These features
work well with both Oracle and non-Oracle connections and are discussed throughout
this guide. For example: validating connections on borrow; setting timeout properties;
setting maximum reuse properties; and connection pool manager operations are all
used to ensure a high-level of connection availability and optimal performance.

Note: Starting from Oracle Database 11g Release 2 (11.2), FCF is also
supported by Oracle Restart on a single instance database. Oracle
Restart was previously known as Single-Instance High Availability
(SIHA). For more information on Oracle Restart, refer to Oracle
Database Administrator's Guide.

Using Fast Connection Failover

8-2 Oracle Universal Connection Pool for JDBC Developer's Guide

Database Version Compatibility for Oracle RAC
Table 8–1 lists supported Database versions for various Oracle RAC features:

Oracle JDBC Driver Version Compatibility for Oracle RAC
Oracle JDBC driver 10.1.x and later versions are supported with Oracle RAC features.

Using Fast Connection Failover
The Fast Connection Failover (FCF) feature is a Fast Application Notification (FAN)
client implemented through the connection pool. The feature requires the use of an
Oracle JDBC driver and an Oracle RAC database or an Oracle Restart on a single
instance database. This section only describes the steps that an application must
perform when using FCF with Oracle RAC. For more information on setting up an
Oracle RAC database, see the Oracle Real Application Clusters Administration and
Deployment Guide or consult an Oracle database administrator.

FCF manages pooled connections for high availability and provides the following
features:

■ FCF supports unplanned outages. Dead connections are rapidly detected and then
the connections are aborted and removed from the pool. Connection removal relies
on abort to rapidly sever socket connections in order to prevent hangs. Borrowed
and in-use connections are interrupted only for unplanned outages.

■ FCF supports planned outages. Borrowed or in-use connections are not
interrupted and closed until work is done and control of the connection is
returned to the pool.

■ FCF encapsulates fatal connection errors and exceptions into the isValid API for
robust and efficient retries. See "Checking If a Connection Is Valid" on page 3-6 for
more information on using this API.

■ FCF recognizes new nodes that join an Oracle RAC cluster and places new
connections on that node appropriately in order to deliver maximum quality of
service to applications at run-time. This facilitates middle-tier integration of Oracle
RAC node joins and work-request routing from the application tier.

■ FCF distributes runtime work requests to all active Oracle RAC instances.

Note: Generic high availability and performance features work
slightly better when using Oracle connections because UCP for JDBC
leverages Oracle JDBC internal APIs.

Table 8–1 Oracle RAC Version Compatibility

Feature Supported Database Version

Fast Connection Failover 10.1.x and later versions

Run-time Connection
Load-Balancing

10.2.x and later versions

Web Session Affinity 11.1.x and later versions

Transaction-Based Affinity 10.2.x and later versions (11.1.x recommended)

Using Fast Connection Failover

Using Oracle RAC Features 8-3

Unplanned Shutdown Scenarios
FCF supports unplanned shutdown scenarios by detecting and removing stale
connections to an Oracle RAC cluster. Stale connections include connections that do
not have a service available on any instance in an Oracle RAC cluster due to
service-down and node-down events. Borrowed connections and available
connections that are stale are detected, and their network connection is severed before
removing them from the pool. These removed connections are not replaced by the
pool. Instead, the application must retry connections before performing any work with
a connection.

Planned Shutdown Scenarios
FCF supports planned shutdown scenarios where an Oracle RAC service can be
gracefully shutdown. In such scenarios, stale borrowed connections are marked and
will only be aborted and removed after they are returned to the pool. Any on-going
transactions do not see any difference and proceed to complete.

The primary difference between unplanned and planned shutdown scenarios is how
borrowed connections are handled. Stale connections that are idle in the pool (not
borrowed) are removed in the same manner as the unplanned shutdown scenario.

Oracle RAC Instance Rejoin and New Instance Scenarios
FCF supports scenarios where an Oracle RAC cluster adds instances that provide a
service of interest. The instance may be new to the cluster or may have been restarted
after a down event. In both cases, UCP for JDBC recognizes the new instance and
creates connections to the node as required.

Example Fast Connection Failover Configuration
The following example demonstrates a connection pool that uses the FCF feature. FCF
is configured through a pool-enabled data source. The example includes enabling FCF,
configuring the Oracle Notification Service (ONS) and configuring a connection URL.
These topics are discussed after the example.

Example 8–1 Fast Connection Failover Configuration Example

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("FCFSamplePool");
pds.setFastConnectionFailoverEnabled(true);
pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=
/oracle11/onswalletfile");
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@(DESCRIPTION= "+
 "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode1) (PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=racnode2) (PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");
...

The isValid method of the oracle.ucp.jdbc.ValidConnection interface is
typically used in conjunction with the FCF feature and is used to check if a borrowed

Note: Borrowed connections are immediately aborted and closed
during unplanned shutdown scenarios. Any on-going transactions
immediately receive an exception.

Using Fast Connection Failover

8-4 Oracle Universal Connection Pool for JDBC Developer's Guide

connection is still usable after an SQL exception has been thrown due to a Oracle RAC
down event. For example:

try
{
 conn = pds.getConnection;
 ...
}
catch (SQLException sqlexc)
{
 if (conn == null || !((ValidConnection) conn).isValid())

 // take the appropriate action

...
conn.close();
}

For more information on the ValidConnection interface, see "Checking If a
Connection Is Valid" on page 3-6.

Enabling Fast Connection Failover
The FCF pool property is used to enable and disable FCF. FCF is disabled by default.
The following example demonstrates enabling FCF as shown in Example 8–1.

pds.setFastConnectionFailoverEnabled(true);

Configuring ONS
FCF relies on the Oracle Notification Service (ONS) to propagate database events
between the connection pool and the Oracle RAC database. At run-time, the
connection pool must be able to setup an ONS environment. ONS (ons.jar) is
included as part of the Oracle Client software. ONS can be configured using either
remote configuration or client-side ONS daemon configuration. Remote configuration
is the preferred configuration for standalone client applications.

Remote Configuration
UCP for JDBC supports remote configuration of ONS through the
SetONSConfiguration pool property. The ONS property value is a string that
closely resembles the content of an ons.config file. The string contains a list of
name=value pairs separated by a new line character (\n). The name can be: nodes,
walletfile, or walletpassword. The parameter string should at least specify the
ONS configuration nodes attribute as a list of host:port pairs separated by a
comma. SSL would be used when the walletfile attribute is specified as an Oracle
wallet file.

The following example demonstrates an ONS configuration string as shown in
Example 8–1:

...
pds.setONSConfiguration("nodes=racnode1:4200,racnode2:4200\nwalletfile=

Note: FCF must also be enabled to use run-time connection load
balancing and connection affinity. These features are discussed later in
this chapter.

Using Fast Connection Failover

Using Oracle RAC Features 8-5

/oracle11/onswalletfile");
...

Applications that use remote configuration must set the oracle.ons.oraclehome
system property to the location of ORACLE_HOME before starting the application. For
example:

java -Doracle.ons.oraclehome=$ORACLE_HOME ...

Client-Side Daemon Configuration
Client-Side ONS daemon configuration is typical of applications that run on a middle
tier server such as the Oracle Application Server. Clients in this scenario directly
configure ONS by updating the ons.config file. The location of the file may be
different depending on the platform. The following example demonstrates an
ons.config file for Example 8–1:

localport=4100
remoteport=4200
nodes=racnode1:4200,racnode2:4200
walletfile=/oracle11/onswalletfile

■ localport: The port that ONS binds to on the localhost interface to talk to local
clients.

■ remoteport: the port that ONS binds to on all interfaces for talking to other ONS
daemons.

The ONS utility (onsctl) can be used to start, stop, ping, and refresh ONS and can
also be used to debug ONS. ONS must be refreshed after updating the ons.config
file.

For more information on setting up ONS, refer to the following links:

■ Oracle Application Server 10g Fast Connection Failover Configuration Guide

■ The Fast Connection Failover chapter in the Oracle Database JDBC Developer's Guide

Configuring the Connection URL
A connection factory’s connection URL must use the service name syntax when using
FCF. The service name is used to map the connection pool to the service. In addition,
the factory class must be an Oracle factory class. The following example demonstrates
configuring the connection URL as shown in Example 8–1:

...
pds.setConnectionFactoryClassName("oracle.jdbc.pool.OracleDataSource");
pds.setURL("jdbc:oracle:thin@//host:port/service_name");
...

Note: The parameters in the configuration string must match those
for the Oracle RAC database. In addition, the
setONSConfiguration property is only used for standalone Java
applications. When using Oracle Application Server, ONS should be
configured using procedures that are applicable to the server.

Using Run-Time Connection Load Balancing

8-6 Oracle Universal Connection Pool for JDBC Developer's Guide

The following examples demonstrate valid connection URL syntax when connecting to
an Oracle RAC database. Examples for both the Oracle JDBC thin and Oracle OCI
driver are included. Notice that the URL can be used to explicitly enable load
balancing among Oracle RAC nodes:

Valid Connection URL Usage
pds.setURL("jdbc:oracle:thin@//host:port/service_name");

pds.setURL("jdbc:oracle:thin@//cluster-alias:port/service_name");

pds.setURL("jdbc:oracle:thin:@(DESCRIPTION= "+
 "(LOAD_BALANCE=on)"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host1)(PORT=1521))"+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521))"+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:thin:@(DESCRIPTION= "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:oci:@TNS_ALIAS");

pds.setURL("jdbc:oracle:oci:@(DESCRIPTION= "+
 "(LOAD_BALANCE=on) "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host1) (PORT=1521)) "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=host2)(PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

pds.setURL("jdbc:oracle:oci:@(DESCRIPTION= "+
 "(ADDRESS=(PROTOCOL=TCP)(HOST=cluster_alias) (PORT=1521)) "+
 "(CONNECT_DATA=(SERVICE_NAME=service_name)))");

Using Run-Time Connection Load Balancing
UCP JDBC connection pools leverage the load balancing functionality provided by an
Oracle RAC database. Run-time connection load balancing requires the use of an
Oracle JDBC driver and an Oracle RAC database. For more information on setting up
an Oracle RAC database, see the Oracle Real Application Clusters Administration and
Deployment Guide or consult an Oracle database administrator.

Run-time connection load balancing is useful when:

■ Traditional balancing of workload is not optimal

■ Requests must be routed to make optimal use of resources in a clustered database

■ Capacity within the cluster differs and is expected to change over time

■ The need to avoid sending work to slow, hung, and dead nodes is required

UCP for JDBC uses the Oracle RAC Load Balancing Advisory. The advisory is used to
balance work across Oracle RAC instances and is used to determine which instances
offer the best performance. Applications transparently receive connections from

Note: An exception is thrown if a service identifier (SID) is specified
for the connection URL when FCF is enabled.

Using Connection Affinity

Using Oracle RAC Features 8-7

instances that offer the best performance. Connection requests are quickly diverted
from instances that have slowed, are not responding, or that have failed.

Run-time connection load balancing provides the following benefits:

■ Manages pooled connections for high performance and scalability

■ Receives continuous recommendations on the percentage of work to route to
database instances

■ Adjusts distribution of work based on different back-end node capacities such as
CPU capacity or response time

■ Reacts quickly to changes in cluster reconfiguration, application workload,
overworked nodes, or hangs

■ Receives metrics from the Oracle RAC Load Balance Advisory. Connections to
well performing instances are used most often. New and unused connections to
under-performing instances will gravitate away over time. When distribution
metrics are not received, connection are selected using a random choice.

Setting Up Run-Time Connection Load Balancing
Run-time connection load balancing requires that FCF is enabled and configured
properly. See "Using Fast Connection Failover" on page 8-2 for detailed instructions on
setting up FCF.

In addition, the Oracle RAC Load Balancing Advisory must be configured with
service-level goals for each service for which load balancing is enabled. The Oracle
RAC Load Balancing Advisory may be configured for SERVICE_TIME or
THROUGHPUT. The connection load balancing goal should be set to SHORT. For
example:

EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'sjob' -, goal =>
 DBMS_SERVICE.GOAL_THROUGHPUT -, clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

Or

EXECUTE DBMS_SERVICE.MODIFY_SERVICE (service_name => 'sjob' -, goal =>
 DBMS_SERVICE.GOAL_SERVICE_TIME -, clb_goal => DBMS_SERVICE.CLB_GOAL_SHORT);

The Load Balancing Advisory goal can also be set by calling the DBMS_
SERVICE.create_service. See the Introduction to Automatic Workload
Management chapter in the Oracle Real Application Clusters Administration and
Deployment Guide. In particular, refer to the "Load Balancing Advisory" section.

Using Connection Affinity
UCP JDBC connection pools leverage affinity functionality provided by an Oracle
RAC database. Connection affinity requires the use of an Oracle JDBC driver and an
Oracle RAC database version 11.1.0.6 or higher. For more information on setting up an
Oracle RAC database, see the Oracle Real Application Clusters Administration and
Deployment Guide or consult an Oracle database administrator.

Connection affinity is a performance feature that allows a connection pool to select
connections that are directed at a specific Oracle RAC instance. The pool uses run-time
connection load balancing (if configured) to select an Oracle RAC instance to create the
first connection and then subsequent connections are created with an affinity to the
same instance.

Using Connection Affinity

8-8 Oracle Universal Connection Pool for JDBC Developer's Guide

UCP JDBC connection pools support two types of connection affinity:
transaction-based affinity and Web session affinity.

Transaction-Based Affinity
Transaction-based affinity is an affinity to an Oracle RAC instance that can be released
by either the client application or a failure event. Applications typically use this type
of affinity when long-lived affinity to an Oracle RAC instance is desired or when the
cost (in terms of performance) of being redirected to a new Oracle RAC instance is
high. Distributed transactions are a good example of transaction-based affinity. XA
connections that are enlisted in a distributed transaction keep an affinity to the Oracle
RAC instance for the duration of the transaction. In this case, an application would
incur a significant performance cost if a connection is redirect to a different Oracle
RAC instance during the distributed transaction.

Web Session Affinity
Web session affinity is an affinity to an Oracle RAC instance that can be released by
either the instance, a client application, or a failure event. The Oracle RAC instance
uses a hint to communicate to a connection pool whether affinity has been enabled or
disabled on the instance. An Oracle RAC instance may disable affinity based on many
factors, such as performance or load. If an Oracle RAC instance can no longer support
affinity, the connections in the pool are refreshed to use a new instance and affinity is
established once again.

Applications typically use this type of affinity when short-lived affinity to an Oracle
RAC instance is expected or if the cost (in terms of performance) of being redirected to
a new Oracle RAC instance is minimal. For example, a mail client session might use
Web session affinity to an Oracle RAC instance to increase performance and is
relatively unaffected if a connection is redirected to a different instance.

Setting Up Connection Affinity
Connection affinity is set up as follows:

■ Enable FCF. See "Using Fast Connection Failover" on page 8-2.

■ Enable run-time connection load balancing. See "Using Run-Time Connection
Load Balancing" on page 8-6.

■ Create a connection affinity callback.

■ Register the callback.

Note: Affinity is only a hint. A connection pool will select a new
Oracle RAC instance for connections if a desired instance is not found.

Using Connection Affinity

Using Oracle RAC Features 8-9

Creating a Connection Affinity Callback
Connection affinity requires the use of a callback. The callback is an implementation of
the ConnectionAffinityCallback interface which is located in the oracle.ucp
package. The callback is used by the connection pool to establish and retrieve a
connection affinity context and is also used to set the affinity policy type
(transaction-based or Web session).

The following example demonstrates setting an affinity policy in a callback
implementation. The example also demonstrates manually setting an affinity context.
typically, the connection pool sets the affinity context inside an application. However,
the ability to manually set an affinity context is provided for applications that want to
customize affinity behavior and control the affinity context directly.

public class AffinityCallbackSample
 implements ConnectionAffinityCallback {

 Object appAffinityContext = null;
 ConnectionAffinityCallback.AffinityPolicy affinityPolicy =
 ConnectionAffinityCallback.AffinityPolicy.TRANSACTION_BASED_AFFINITY;

 //For Web session affinity, use WEBSESSION_BASED_AFFINITY;

 public void setAffinityPolicy(AffinityPolicy policy)
 {
 affinityPolicy = policy;
 }

 public AffinityPolicy getAffinityPolicy()
 {
 return affinityPolicy;
 }

 public boolean setConnectionAffinityContext(Object affCxt)
 {
 synchronized (lockObj)
 {
 appAffinityContext = affCxt;
 }
 return true;
 }

 public Object getConnectionAffinityContext()
 {
 synchronized (lockObj)
 {
 return appAffinityContext;

Note: Transaction-based affinity is strictly scoped between the
application/middle-tier and UCP for JDBC; therefore,
transaction-based affinity only requires that the
setFastConnectionFailoverEnabled property be set to true
and does not require complete FCF configuration.

In addition, transaction-based affinity does not technically require
run-time connection load balancing. However, it can help with
performance and is usually enabled regardless. If run-time connection
load balancing is not enabled, the connection pool randomly picks
connections.

Using Connection Affinity

8-10 Oracle Universal Connection Pool for JDBC Developer's Guide

 }
 }
}

Registering a Connection Affinity Callback
A connection affinity callback is registered on a connection pool using the
registerConnectionAffinityCallback method. The callback is registered when
creating the connection pool. Only one callback can be registered per connection pool.

The following example demonstrates registering a connection affinity callback
implementation:

ConnectionAffinityCallback callback = new MyCallback();

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("AffinitySamplePool");
pds.registerConnectionAffinityCallback(callback);
...

Removing a Connection Affinity Callback
A connection affinity callback is removed from a connection pool using the
removeConnectionAffinityCallback method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();

pds.setConnectionPoolName("AffinitySamplePool");
pds.removeConnectionAffinityCallback();
...

9

Diagnosing a Connection Pool 9-1

9Diagnosing a Connection Pool

The following sections are included in this chapter:

■ Pool Statistics

■ Dynamic Monitoring Service Metrics

■ Viewing RAC Statistics

■ Setting Up Logging in UCP

■ Exceptions and Error Codes

Pool Statistics
Universal Connection Pool (UCP) for JDBC provides a set of runtime statistics for the
connection pool. These statistics can be divided into the following two categories:

■ Noncumulative

These statistics apply only to the current running connection pool instance.

■ Cumulative

These statistics are collected across multiple pool start/stop cycles.

The oracle.ucp.UniversalConnectionPoolStatistics interface provides
methods that are used to query the connection pool statistics. The methods of this
interface can be called from a pool-enabled data source and pool-enabled XA data
source, using the oracle.ucp.jdbc.PoolDataSource.getStatistics method.
For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...
...
int totalConnsCount = pds.getStatistics().getTotalConnectionsCount();
System.out.println("The total connetion count in the pool is "+ totalConnsCount
+".");

The oracle.ucp.jdbc.PoolDataSource.getStatistics method can also be
called by itself to return all connection pool statistics as a String.

Dynamic Monitoring Service Metrics
UCP supports all the pool statistics to be in the form of Dynamic Monitoring Service
(DMS) metrics. You must include the dms.jar file in the classpath of the application
to collect and utilize these DMS metrics.

Viewing RAC Statistics

9-2 Oracle Universal Connection Pool for JDBC Developer's Guide

UCP supports DMS metrics collection in both the pool manager interface and the pool
manager MBean. You can use the
UnversalConnectionPoolManager.startMetricsCollection method to start
collecting DMS metrics for the specified connection pool instance, and use the
UnversalConnectionPoolManager.stopMetricsCollection method to stop
DMS metrics collection. The metrics update interval can be specified using the
UnversalConnectionPoolManager.setMetricUpdateInterval method. The
pool manager MBean exports similar operations.

Viewing RAC Statistics
UCP for JDBC provides a set of Oracle RAC run-time statistics that are used to
determine how well a connection pool is utilizing Oracle RAC features and are also
used to help determine whether the connection pool has been configured properly to
use the Oracle RAC features. The statistics report FCF processing information,
run-time connection load balance success/failure rate, and affinity context
success/failure rate.

The OracleJDBCConnectionPoolStatistics interface that is located in the
oracle.ucp.jdbc.oracle package provides methods that are used to query the
connection pool for Oracle RAC statistics. The methods of this interface can be called
from a pool-enabled and pool-enabled XA data source using the data source’s
getStatistics method. For example:

PoolDataSource pds = PoolDataSourceFactory.getPoolDataSource();
...

Long rclbS = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getSuccessfulRCLBBasedBorrowCount();
System.out.println("The RCLB success rate is "+rclbS+".");

The data source’s getStatistics method can also be called by itself and returns all
connection pool statistics as a String and includes the Oracle RAC statistics.

Fast Connection Failover Statistics
The getFCFProcessingInfo method provides information on recent Fast
Connection Failover (FCF) attempts in the form of a String. The FCF information is
typically used to help diagnose FCF problems. The information includes the outcome
of each FCF attempt (successful or failed), the relevant Oracle RAC instances, the
number of connections that were cleaned up, the exception that triggered the FCF
attempt failure, and more. The following example demonstrates using the
getFCFProcessingInfo method:

Sting fcfInfo = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFCFProcessingInfo();
System.out.println("The FCF information: "+fcfInfo+".");

Following is a sample output string from the getFCFProcessingInfo() method:

 Oct 28, 2008 12:34:02 SUCCESS <Reason:planned> <Type:SERVICE_UP> \
 <Service:"svvc1"> <Instance:"inst1"> <Db:"db1"> \
 Connections:(Available=6 Affected=2 FailedToProcess=0 MarkedDown=2 Closed=2)
\
 (Borrowed=6 Affected=2 FailedToProcess=0 MarkedDown=2 MarkedDeferredClose=0
Closed=2) \
 TornDown=2 MarkedToClose=2 Cardinality=2
 ...
 Oct 28, 2008 12:09:52 SUCCESS <Reason:unplanned> <Type:SERVICE_DOWN> \

Setting Up Logging in UCP

Diagnosing a Connection Pool 9-3

 <Service:"svc1"> <Instance:"inst1"> <Db:"db1"> \
 Connections:(Available=6 Affected=2 FailedToProcess=0 MarkedDown=2 Closed=2)
\
 (Borrowed=6 Affected=2 FailedToProcess=0 MarkedDown=2 MarkedDeferredClose=0
Closed=2)
 ...
 Oct 28, 2008 11:14:53 FAILURE <Type:HOST_DOWN> <Host:"host1"> \
 Connections:(Available=6 Affected=4 FailedToProcess=0 MarkedDown=4 Closed=4)
\
 (Borrowed=6 Affected=4 FailedToProcess=0 MarkedDown=4 MarkedDeferredClose=0
Closed=4)

If you enable logging, then the preceding information will also be available in the UCP
logs and you will be able to verify the FCF outcome.

Run-Time Connection Load Balance Statistics
The run-time connection load balance statistics are used to determine if a connection
pool is effectively utilizing the Oracle RAC database’s run-time connection load
balancing feature. The statistics report how many requests successfully used the
run-time connection load balancing algorithms and how many requests failed to use
the algorithms. The getSuccessfulRCLBBasedBorrowCount method and the
getFailedRCLBBasedBorrowCount method, respectively, are used to get the
statistics. The following example demonstrates using the
getFailedRCLBBasedBorrowCount method:

Long rclbF = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFailedRCLBBasedBorrowCount();
System.out.println("The RCLB failure rate is: "+rclbF+".");

A high failure rate may indicate that the RAC Load Balancing Advisory or connection
pool is not configured properly.

Connection Affinity Statistics
The connection affinity statistics are used to determine if a connection pools is
effectively utilizing connection affinity. The statistics report the number of borrow
requests that succeeded in matching the affinity context and how many requests failed
to match the affinity context. The getSuccessfulAffinityBasedBorrowCount
method and the getFailedAffinityBasedBorrowCount method, respectively, are
used to get the statistics. The following example demonstrates using the
getFailedAffinityBasedBorrowCount method:

Long affF = ((OracleJDBCConnectionPoolStatistics)pds.getStatistics()).
 getFailedAffinityBasedBorrowCount();
System.out.println("The connection affinity failure rate is: "+affF+".");

Setting Up Logging in UCP
UCP for JDBC leverages the JDK logging facility (java.util.logging). Logging is
not enabled by default and must be configured in order to print log messages. Logging
can be configured using a log configuration file as well as through API-level
configuration.

Note: The default log level is null. This ensures that a parent
logger’s log level is used by default.

Setting Up Logging in UCP

9-4 Oracle Universal Connection Pool for JDBC Developer's Guide

Using a Logging Properties File
Logging can be configured using a properties file. The location of the properties file
must be set as a Java property for the logging configuration file property. For example:

java -Djava.util.logging.config.file=log.properties

The logging properties file defines the handler to use for writing logs, the formatter to
use for formatting logs, a default log level, as well as log levels for specific packages or
classes. For example:

handlers = java.util.logging.ConsoleHandler
java.util.logging.ConsoleHandler.level = ALL
java.util.logging.ConsoleHandler.formatter = java.util.logging.SimpleFormatter

oracle.ucp.level = FINEST
oracle.ucp.jdbc.PoolDataSource = WARNING

A custom formatter is included with UCP for JDBC and can be entered as the value for
the formatter property. For example:

java.util.logging.ConsoleHandler.formatter = oracle.ucp.util.logging.UCPFormatter

You can also download the ucpdemos.jar file, which is shipped with UCP, from
Oracle Technology Network (OTN). This file contains a list of sample logging property
files. For example, this file contains the logging property file that can be used for
troubleshooting the Fast Connection Failover (FCF) feature.

Using UCP for JDBC and JDK API
Logging can be dynamically configured though either the UCP for JDBC API or the
JDK API. When using the UCP for JDBC API, logging is configured using a connection
pool manager. When using the JDK, logging is configured using the
java.util.logging implementation.

The following example demonstrates using the UCP for JDBC API to configure
logging:

UniversalConnectionPoolManager mgr = UniversalConnectionPoolManagerImpl.
getUniversalConnectionPoolManager();

mgr.setLogLevel(Level.FINE);

The following example demonstrate using the JDK logging implementation directly:

Logger.getLogger("oracle.ucp").setLevel(Level.FINEST);
Logger.getLogger("oracle.ucp.jdbc.PoolDataSource").setLevel(Level.FINEST);

Supported Log Levels
The following list describes each of the log levels that are supported for JDBC. Levels
lower than FINE produce output that may not be meaningful to users. Levels lower
than FINER will produce very large volumes of output.

■ INTERNAL_ERROR – Internal Errors

■ SEVERE – SQL Exceptions

■ WARNING – SQL Warnings and other invisible problems

■ INFO – Public events such as connection attempts or Oracle RAC events

Exceptions and Error Codes

Diagnosing a Connection Pool 9-5

■ CONFIG – SQL statements

■ FINE – Public APIs

■ TRACE_10 – Internal events

■ FINER – Internal APIs

■ TRACE_20 – Internal debug

■ TRACE_30 – High volume internal APIs

■ FINEST – High volume internal debug

Exceptions and Error Codes
Many UCP methods throw the UniversalConnectionPoolException, with
exception chaining supported. You can call the printStackTrace method on the
thrown exception, to identify the root cause of the exception. The
UniversalConnectionPoolException includes standard Oracle error codes that
are in the range of 45000 and 45499. The getErrorCode method can be used to
retrieve the error code for an exception.

Exceptions and Error Codes

9-6 Oracle Universal Connection Pool for JDBC Developer's Guide

A

Error Codes Reference A-1

AError Codes Reference

This appendix briefly discusses the general structure of Universal Connection Pool
(UCP) error messages, UCP error messages for the connection pool layer, and UCP
error messages for JDBC data sources and dynamic proxies. The appendix is organized
as follows:

■ General Structure of UCP Error Messages

■ Connection Pool Layer Error Messages

■ JDBC Data Sources and Dynamic Proxies Error Messages

Both the message lists are sorted by the error message number.

General Structure of UCP Error Messages
The general UCP error message structure allows run-time information to be appended
to the end of a message, following a colon, as follows:

<error_message>:<extra_info>

For example, a "closed statement" error might be displayed as follows:

Closed Statement:next

This indicates that the exception was thrown during a call to the next method (of a
result set object).

In some cases, the user can find the same information in a stack trace.

Connection Pool Layer Error Messages
This section lists UCP error messages for the connection pool layer.

Table A–1 Connection Pool Layer Error Messages

Error Message Number Message

UCP-45001 Universal Connection Pool internal error

UCP-45002 No available connections in the Universal Connection Pool

UCP-45003 Universal Connection Pool already exists

UCP-45004 Invalid connection retrieval information

UCP-45005 Callback already registered

UCP-45006 Invalid Universal Connection Pool configuration

Connection Pool Layer Error Messages

A-2 Oracle Universal Connection Pool for JDBC Developer's Guide

UCP-45051 Inactive connection timeout timer scheduling failed

UCP-45052 Abandoned connection timeout timer scheduling failed

UCP-45053 Time-to-live connection timeout timer scheduling failed

UCP-45054 The Universal Connection Pool cannot be null

UCP-45055 Error when removing an available connection

UCP-45057 The AvailableConnections object cannot be null

UCP-45058 The Failoverable object cannot be null

UCP-45059 MaxPoolsize is set to 0. There are no connections to return

UCP-45060 Invalid life cycle state. Check the status of the Universal
Connection Pool

UCP-45061 Universal Connection Pool is not started. Start the Universal
Connection Pool before accessing

UCP-45062 The collection of available connections can only be set when the
Universal Connection Pool is in the initialization state

UCP-45063 Universal Connection Pool has been shutdown while attempting
to get a connection

UCP-45064 All connections in the Universal Connection Pool are in use

UCP-45065 Connection borrowing returned null

UCP-45091 Connection labeling callback already registered

UCP-45092 Borrowing labeled connection with no labeling callback
registered

UCP-45093 Requested no-label connection but borrowing labeled
connection

UCP-45097 Connection harvesting timer scheduling failed

UCP-45100 ConnectionFactoryAdapter returned null

UCP-45103 ConnectionFactoryAdapter must be an instance of
DataSourceConnectionFactoryAdapter

UCP-45104 ConnectionFactoryAdapter object cannot be null

UCP-45105 ConnectionFactoryAdapter must be an instance of
ConnectionPoolDataSourceConnectionFactoryAdapter

UCP-45106 ConnectionFactoryAdapter must be an instance of
XADataSourceConnectionFactoryAdapter

UCP-45150 UniversalPooledConnection cannot be null

UCP-45152 UniversalPooledConnectionStatus object cannot be null

UCP-45153 The connection label key cannot be null or an empty string

UCP-45154 The connection labeling operation cannot be invoked on closed
connections

UCP-45155 Connection harvesting callback already registered

UCP-45156 Abandoned connection timeout callback already registered

UCP-45157 Time-to-live connection timeout callback already registered

UCP-45201 The connection label key cannot be null or an empty string

Table A–1 (Cont.) Connection Pool Layer Error Messages

Error Message Number Message

Connection Pool Layer Error Messages

Error Codes Reference A-3

UCP-45202 The cloning of the ConnectionRetrievalInfo object failed

UCP-45203 The Connection Request Info is null

UCP-45251 ConnectionPoolDataSource cannot be null

UCP-45252 Invalid ConnectionRetrievalInfo object

UCP-45253 SQLException occurred while getting PooledConnection from
ConnectionPoolDataSource

UCP-45254 Invalid connection type. Must be a javax.sql.PooledConnection

UCP-45255 SQLException while closing PooledConnection

UCP-45256 Datasource cannot be null

UCP-45257 Cannot get Connection from Datasource

UCP-45258 Invalid connection type. Must be a java.sql.Connection

UCP-45259 The connection to proxy must be an instance of
java.sql.Connection

UCP-45260 XADatasource cannot be null

UCP-45261 SQLException occurred while getting XAConnection from
XADataSource

UCP-45262 Invalid connection type. Must be a javax.sql.XAConnection

UCP-45263 SQLException occurred while closing XAConnection

UCP-45264 The connection cannot be null

UCP-45265 The connection to proxy must be an instance of
java.sql.Statement

UCP-45266 The statement to proxy must be an instance of java.sql.ResultSet

UCP-45267 The connection to proxy must be an instance of
javax.sql.XAConnection

UCP-45268 The Driver argument cannot be null

UCP-45269 The URL argument cannot be null

UCP-45301 Unable to get a connection for failover information

UCP-45302 Unable to execute SQL query to get failover information

UCP-45303 SQLException occurred while getting failover information

UCP-45304 The event type cannot be null

UCP-45305 The event type is invalid. Event type must be
database/event/host or database/event/service

UCP-45306 The failover event type is invalid. It must be an
OracleFailoverEvent

UCP-45307 The affinity context is invalid. It must be an
OracleConnectionAffinityContext

UCP-45308 Exception occurred while enabling failover with remote ONS
subscription

UCP-45350 Universal Connection Pool already exists in the Universal
Connection Pool Manager. Universal Connection Pool cannot be
added to the Universal Connection Pool Manager

Table A–1 (Cont.) Connection Pool Layer Error Messages

Error Message Number Message

Connection Pool Layer Error Messages

A-4 Oracle Universal Connection Pool for JDBC Developer's Guide

UCP-45351 Universal Connection Pool not found in Universal Connection
Pool Manager. Register the Universal Connection Pool with
Universal Connection Pool Manager

UCP-45352 Cannot get Universal Connection Pool Manager instance

UCP-45353 Cannot get Universal Connection Pool Manager MBean instance

UCP-45354 MBean ObjectName is not in the right format. Use the right
format to construct ObjectName for MBean

UCP-45355 MBean exception occurred while registering or unregistering the
MBean

UCP-45356 MBean already exits in the MBeanServer. Use a different name to
register MBean

UCP-45357 Exception occurred when trying to register an object in the
MBean server that is not a JMX compliant MBean

UCP-45358 The specified MBean does not exist in the repository

UCP-45359 Invalid target object type is specified. Check the managed
resource

UCP-45360 Invalid MBean Descriptor is specified. Check the Universal
Connection Pool Manager MBean Descriptor

UCP-45361 Runtime exception occurred while building MBeanInfo for
Universal Connection Pool Manager MBean

UCP-45362 Runtime exception occurred while building constructors
information for Universal Connection Pool Manager MBean

UCP-45363 Runtime exception occurred while building attributes
information for Universal Connection Pool Manager MBean

UCP-45364 Runtime exception occurred while building operations
information for Universal Connection Pool Manager MBean

UCP-45365 Universal Connection Pool must be an instance of
ConnectionConnectionPool or OracleConnectionConnectionPool

UCP-45366 Invalid MBean Descriptor is specified. Check the JDBC
Universal Connection Pool MBean Descriptor

UCP-45367 Runtime exception occurred while building MBeanInfo for JDBC
Universal Connection Pool MBean

UCP-45368 Runtime exception occurred while building constructors
information for JDBC Universal Connection Pool MBean

UCP-45369 Runtime exception occurred while building attributes
information for JDBC Universal Connection Pool MBean

UCP-45370 Runtime exception occurred while building operations
information for JDBC Universal Connection Pool MBean

UCP-45371 Runtime exception occurred while building attributes
information for Universal Connection Pool MBean

UCP-45372 Runtime exception occurred while building operations
information for Universal Connection Pool MBean

UCP-45373 Invalid MBean Descriptor is specified. Check the Universal
Connection Pool MBean Descriptor

UCP-45374 Runtime exception occurred while building MBeanInfo for
Universal Connection Pool MBean

Table A–1 (Cont.) Connection Pool Layer Error Messages

Error Message Number Message

JDBC Data Sources and Dynamic Proxies Error Messages

Error Codes Reference A-5

JDBC Data Sources and Dynamic Proxies Error Messages
This section lists UCP error messages for JDBC data sources and dynamic proxies error
messages.

UCP-45375 Cannot stop the UCP metric collection. Exception occurred while
trying to stop the metric collection or while destroying the
nouns or sensors.

UCP-45376 Metrics update timer task scheduling failed

UCP-45377 Problem occurred while updating UCP metric sensors

UCP-45378 Universal Connection Pool is not an instance of
OracleJDBCConnectionPool and cannot access
ONSConfiguration property

UCP-45379 Cannot set the connection pool name in Universal Connection
Pool MBean. Check the connection pool name to avoid
duplicates

UCP-45380 MBean object is null

UCP-45381 MBean object name is null

UCP-45382 MBean display name is null

UCP-45383 Invalid adapter for pool creation in Universal Connection Pool
Manager

UCP-45384 Invalid adapter for pool creation in Universal Connection Pool
Manager MBean

UCP-45385 Error during pool creation in Universal Connection Pool
Manager

UCP-45386 Error during pool creation in Universal Connection Pool
Manager MBean

UCP-45401 Waiting threads LO watermark cannot be negative

UCP-45402 Waiting threads HI watermark cannot be negative

UCP-45403 Total worker threads limit cannot be negative

UCP-45404 Queue poll timeout cannot be negative

UCP-45405 The waiting threads HI watermark cannot be lower than the LO
watermark

UCP-45406 The limit of total worker threads cannot be higher than the limit
of waiting threads

UCP-45407 The error number is out of range

UCP-45408 Invalid operation because the logger is null

Table A–2 JDBC Data Sources and Dynamic Proxies Error Messages

Error Message Number Message

SQL-0 Unable to start the Universal Connection Pool

SQL-1 Unable to build the Universal Connection Pool

SQL-2 Invalid minimum pool size

Table A–1 (Cont.) Connection Pool Layer Error Messages

Error Message Number Message

JDBC Data Sources and Dynamic Proxies Error Messages

A-6 Oracle Universal Connection Pool for JDBC Developer's Guide

SQL-3 Invalid maximum pool size

SQL-4 Invalid inactive connection timeout

SQL-5 Invalid connection wait timeout

SQL-6 Invalid time-to-live connection timeout

SQL-7 Invalid abandoned connection timeout

SQL-8 Invalid timeout check interval

SQL-9 Failed to enable Failover

SQL-10 Failed to set the maxStatements value

SQL-11 Failed to set the SQL string for validation

SQL-12 Invalid connection harvest trigger count

SQL-13 Invalid connection harvest max count

SQL-14 Universal Connection Pool is created already. Can not create the
Universal Connection Pool again

SQL-15 Exception occurred while destroying the Universal Connection
Pool

SQL-16 Operation only applies to Oracle connection pools

SQL-17 Exception occurred while setting ONS configuration string

SQL-18 Failed to register labeling callback

SQL-19 Failed to remove labeling callback

SQL-20 Failed to register affinity callback

SQL-21 Failed to remove affinity callback

SQL-22 Invalid Universal Connection Pool configuration

SQL-23 Unable to create factory class instance with provided factory
class name

SQL-24 Unable to set the User

SQL-25 Unable to set the Password

SQL-26 Unable to set the URL

SQL-27 The factory class must be an instance of DataSource

SQL-28 Cannot create connections. There are no available connections

SQL-29 Exception occurred while getting connection

SQL-30 Universal Connection Pool is not started

SQL-31 The connection is closed

SQL-32 Error occurred when applying label

SQL-33 Error occurred when removing the connection label

SQL-34 Error occurred when getting labels

SQL-35 Error occurred when getting unmatched labels

SQL-36 Error occurred when setting connection harvestable

SQL-37 Error occurred when registering harvesting callback

Table A–2 (Cont.) JDBC Data Sources and Dynamic Proxies Error Messages

Error Message Number Message

JDBC Data Sources and Dynamic Proxies Error Messages

Error Codes Reference A-7

SQL-38 Error occurred when removing harvesting callback

SQL-39 Error occurred when registering abandoned-connection callback

SQL-40 Error occurred when removing abandoned-connection callback

SQL-41 Error occurred when registering time-to-live-connection callback

SQL-42 Error occurred when removing time-to-live-connection callback

SQL-43 The ResultSet is closed

SQL-44 The statement is closed

SQL-45 Cannot set the connection pool name. Check the connection pool
name to avoid duplicates

SQL-46 The SQL string is null

SQL-47 Error occurred when setting connection to be invalid

SQL-48 Unable to set the Connection properties

SQL-49 Unable to set the Database server name

SQL-50 Unable to set the Database port number

SQL-51 Unable to set the Database name

SQL-52 Unable to set the DataSource name

SQL-53 Unable to set the DataSource description

SQL-54 Unable to set the DataSource network protocol

SQL-55 Unable to set the DataSource role name

SQL-56 Invalid max connection reuse time

SQL-57 Invalid max connection reuse count

SQL-58 The method is disabled

SQL-59 Unable to set the connection factory properties

Table A–2 (Cont.) JDBC Data Sources and Dynamic Proxies Error Messages

Error Message Number Message

JDBC Data Sources and Dynamic Proxies Error Messages

A-8 Oracle Universal Connection Pool for JDBC Developer's Guide

Index-1

Index

A
abandon connection timeout property, 4-4
AbandonedConnectionTimeoutCallback, 6-1
admin package, 2-3
affinity

transaction-based, 8-8
web session, 8-8

API overview, 2-3
applyConnectionLabel, 5-4
applying connection labels, 5-4

B
basic connection example, 2-2
benefits of connection pools, 1-1
benefits of FCF, 8-2
benefits of run-time connection load balancing, 8-7
borrowing connections

basic steps, 2-1
conceptual architecture, 1-2
labeled, 5-5
overview, 3-1
using JNDI, 3-4
using the pool-enabled data source, 3-1
using the pool-enabled XA data source, 3-3

C
caching statements, 4-7
callback

connection affinity, 8-9
labeling, 5-2

checking unmatched labels, 5-5
closing connections, 3-7
conceptual architecture, 1-2
configure method, 5-2
configure ONS, 8-4
connection affinity

create callback, 8-9
overview, 8-7
register callback, 8-10
remove callback, 8-10
setting up, 8-8
statistics, 9-3
transaction-based, 8-8

web session, 8-8
connection factory, 2-2

conceptual architecture, 1-2
requirements, 2-1
setting, 3-2, 3-3

connection labels
apply, 5-4
check unmatched, 5-5
implement callback, 5-2
overview, 5-1
removing, 5-6

Connection object, 1-2
connection pool

benefits, 1-1
create explicitly, 7-2
create implicitly, 2-1, 3-1
destroy, 7-3
general overview, 1-1
maintenance, 7-3
purge, 7-4
recycle, 7-4
refresh, 7-4
remove connection from, 3-7
start, 7-3
stop, 7-3
understanding lifecycle, 7-2

connection pool manager
create, 7-1
create pool explicitly, 7-2
destroy pool, 7-3
overview, 1-3, 7-1
purge pool, 7-4
recycle pool, 7-4
refresh pool, 7-4
start pool, 7-3
stop pool, 7-3

connection pool properties
abandon connection timeout, 4-4
connection wait timeout, 4-5
harvest maximum count, 4-7
harvest trigger count, 4-6
inactive connection timeout, 4-5
initial pool size, 4-2
maximum connection reuse count, 4-4
maximum connection reuse time, 4-3
maximum pool size, 4-3

Index-2

maximum statements, 4-8
minimum pool size, 4-2
optimizing, 4-1
overview, 1-3
setting, 3-5, 4-1
timeout check interval, 4-5
time-to-live connection timeout, 4-4
validate on borrow, 3-5

connection properties, 3-4
connection reuse properties, setting, 4-3
connection steps, basic, 2-1

example, 2-2
connection URL, 8-5
connection wait timeout property, 4-5
ConnectionAffinityCallback interface, 8-9
ConnectionLabelingCallback interface, 5-1, 5-2
connections

basic steps, 2-1
borrowing, 3-1
borrowing labeled, 5-5
borrowing using JNDI, 3-4
checking if valid, 3-6
closing, 3-7
controlling stale, 4-3
harvesting, 4-6
labeling, 5-1
removing from the pool, 3-7
run-time load balancing, 8-6
using affinity, 8-7
validate on borrow, 3-5

cost method, 5-2
create connection pool

explicit, 7-2
implicit, 2-1

D
data source

PoolDataSource, 1-2, 3-1
PoolXADataSource, 1-2, 3-3

database requirements, 2-1
destroyConnectionPool, 7-3
destroying a connection pool, 7-3

E
enable FCF property, 8-4
errors

connection pool layer messages, A-1
general UCP message structure, A-1
JDBC data sources and dynamic proxies

messages, A-5
example

basic connection, 2-2
connection affinity callback, 8-9
FCF, 8-3
labeling callback, 5-3

F
FAN, 8-2

Fast Connection Failover
See FCF

FCF, 8-2
configure connection URL, 8-5
configure ONS, 8-4
enable, 8-4
example, 8-3
statistics, 9-2

G
getAffinityPolicy, 8-9
getConnection methods, 3-2, 5-5
getPoolDataSource, 3-1
getPoolXADataSource, 3-3
getStatistics, 9-2
getting a connection, 3-2
getting an XA connection, 3-3
getUniversalConnectionPoolManager, 7-1
getUnmatchedConnectionLabels, 5-5
getXAConnection methods, 3-3

H
harvest connections, 4-6
harvest maximum count property, 4-7
harvest trigger count property, 4-6
HarvestableConnection interface, 4-6
high availability, 1-3, 8-1

I
inactive connection timeout property, 4-5
initial pool size property, 4-2
integration

third-party, 3-8
isValid, 3-6

J
JDBC connection pool

See UCP for JDBC
JDBC driver

connection properties, 3-4
requirements, 2-1

jdbc package, 2-3
JNDI, 3-4
JRE requirements, 2-1

L
LabelableConnection interface, 5-1, 5-4
labeled connections

apply label, 5-4
borrowing, 5-5
check unmatched, 5-5
implement callback, 5-2
overview, 5-1
remove label, 5-6

labeling callback
create, 5-2

Index-3

example, 5-3
register, 5-4
removing, 5-4
run-time algorithm, 5-2

lifecycle of connection pools, 7-2
lifecycle states, 7-2
Load Balance Advisory, 8-6
load balancing, 8-6
logging, 9-3
logging configuration

programmatically, 9-4
properties file, 9-4

logging levels, 9-4

M
manager, connection pool, 7-1
maximum connection reuse count property, 4-4
maximum connection reuse time property, 4-3
maximum pool size property, 4-3
maximum statements property, 4-8
method, 3-3
minimum pool size property, 4-2

O
ONS, 8-4
ons.config file, 8-4
optimizing a connection pool, 4-1
Oracle Client software, 8-4
Oracle Client software requirements, 2-1
Oracle Notification Service

See ONS
overview

API, 2-3
connection pool manager, 7-1
connection pool properties, 4-1
connection pools, general, 1-1
connection steps, 2-1
high availability and performance features, 1-3
labeling connections, 5-1
RAC features, 8-1
UCP for JDBC, 1-2

P
password, 2-2, 3-2, 3-3
pool manager

See connection pool manager
pool properties

See connection pool properties
pool size, controlling

initial size, 4-2
maximum, 4-3
minimum, 4-2

PoolDataSource interface, 1-2, 3-1
PoolDataSourceFactory class, 3-1, 3-3
PoolDataSourceImpl, 3-8
pool-enabled data source

create instance, 3-1
pool-enabled XA data source

create instance, 3-3
PoolXADataSource interface, 1-2, 3-3
PoolXADataSourceImpl, 3-8
purgeConnectionPool, 7-4
purging a connection pool, 7-4

R
RAC

connection affinity, 8-7
FCF, 8-2
features overview, 8-1
run-time connection load balancing, 8-6
statistics, 9-2

RAC Load Balance Advisory, 8-6
Real Application Clusters

See RAC
recycleConnectionPool, 7-4
recycling a connection pool, 7-4
refreshConnectionPool, 7-4
refreshing a connection pool, 7-4
registerConnectionAffinityCallback, 8-10
registerConnectionLabelingCallback, 5-4
removeConnectionAffinityCallback, 8-10
removeConnectionLabel, 5-6
removeConnectionLabelingCallback, 5-4
removing connection labels, 5-6
removing connections from the pool, 3-7
reuse properites

maximum count, 4-4
reuse properties

maximum time, 4-3
run-time connection load balancing

overview, 8-6
setting up, 8-7
statistics, 9-3

S
SERVICE_TIME, 8-7
setAbandonConnectionTimeout, 4-4
setAffinityPolicy, 8-9
setConnectionAffinityContext, 8-9
setConnectionFactoryClassName, 3-2, 3-3
setConnectionHarvestable, 4-6
setConnectionHarvestMaxCount, 4-7
setConnectionHarvestTriggerCount, 4-6
setConnectionProperties, 3-4
setConnectionWaitTimeout, 4-5
setFastConnectionFailoverEnabled, 8-4
setInactiveConnectionTimeout, 4-5
setInitialPoolSize, 4-2
setInvalid, 3-6, 3-7
setMaxConnectionReuseCount, 4-4
setMaxConnectionReuseTime, 4-3
setMaxPoolSize, 4-3
setMaxStatements, 4-8
setMinPoolSize, 4-2
setONSConfiguration, 8-4
setPassword, 3-2, 3-3

Index-4

setSQLForValidateConnection, 3-5
setTimeToLiveConnectionTimeout, 4-4
setTimoutCheckInterval, 4-5
setURL, 3-2, 3-3
setUser, 3-2, 3-3
setValidateConnectionOnBorrow, 3-5
SHORT, 8-7
SQL statement caching, 4-7
stale connections, 4-3
startConnectionPool, 7-3
starting a connection pool, 7-3
statement caching, 4-7
statistics

connection affinity, 9-3
FCF, 9-2
RAC, 9-2
run-time connection load balancing, 9-3

stopConnectionPool, 7-3
stopping a connection pool, 7-3

T
third-party integration, 3-8
THROUGHPUT, 8-7
timeout check interval property, 4-5
timeout properties

abandon, 4-4
check interval, 4-5
inactive, 4-5
time-to-live, 4-4
wait, 4-5

time-to-live connection timeout property, 4-4
TimeToLiveConnectionTimeoutCallback, 6-1
transaction-based affinity, 8-8

U
UCP for JDBC

API overview, 2-3
basic connection steps, 2-1
conceptual architecture, 1-2
connection pool manager
connection pool properties, 3-5, 4-1
overview, 1-2
RAC features, 8-1
software requirements, 2-1

UCP manager
See connection pool manager

ucp package, 2-4
universal connection pool

See UCP for JDBC
UniversalConnectionPoolManager interface, 7-1
UniversalConnectionPoolManagerImpl, 7-1
unmatched labels, 5-5
URL, 2-2, 3-2, 3-3, 8-5
username, 2-2, 3-2, 3-3

V
validate connections

on borrow, 3-5

programmatically, 3-6
ValidConnection interface, 3-6, 3-7

W
web session affinity, 8-8

X
XA connections, 1-2, 3-3
XAConnection object, 1-2

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to UCP
	Overview of Connection Pool
	Benefits of Using Connection Pools

	Overview of Universal Connection Pool for JDBC
	Conceptual Architecture
	Connection Pool Properties
	Connection Pool Manager
	High Availability and Performance Scenarios

	2 Getting Started
	Requirements for using UCP
	Basic Connection Steps in UCP
	Basic Connection Example Using UCP
	UCP for JDBC API Overview

	3 Getting Database Connections in UCP
	Borrowing Connections from UCP
	Using the Pool-Enabled Data Source
	Using the Pool-Enabled XA Data Source
	Setting Connection Properties
	Using JNDI to Borrow a Connection

	Setting Connection Pool Properties for UCP
	Validating Connections in UCP
	Validate When Borrowing
	Checking If a Connection Is Valid

	Returning Borrowed Connections to UCP
	Removing Connections from UCP
	Third-Party Integration

	4 Optimizing Universal Connection Pool Behavior
	Overview of Optimizing Connection Pools
	Controlling the Pool Size in UCP
	Setting the Initial Pool Size
	Setting the Minimum Pool Size
	Setting the Maximum Pool Size

	Controlling Stale Connections in UCP
	Setting Connection Reuse
	Setting the Maximum Connection Reuse Time
	Setting the Maximum Connection Reuse Count

	Setting the Abandon Connection Timeout
	Setting the Time-To-Live Connection Timeout
	Setting the Connection Wait Timeout
	Setting the Inactive Connection Timeout
	Setting the Timeout Check Interval

	Harvesting Connections in UCP
	Setting Whether a Connection is Harvestable
	Setting the Harvest Trigger Count
	Setting the Harvest Maximum Count

	Caching SQL Statements in UCP
	Enabling Statement Caching

	5 Labeling Connections in UCP
	Overview of Labeling Connections in UCP
	Implementing a Labeling Callback in UCP
	Creating a Labeling Callback
	An Example Labeling Callback

	Registering a Labeling Callback
	Removing a Labeling Callback

	Applying Connection Labels in UCP
	Borrowing Labeled Connections from UCP
	Checking Unmatched Labels in UCP
	Removing a Connection Label from UCP

	6 Controlling Reclaimable Connection Behavior
	AbandonedConnectionTimeoutCallback
	TimeToLiveConnectionTimeoutCallback

	7 Using the Connection Pool Manager
	Using the UCP Manager
	Connection Pool Manager Overview
	Creating a Connection Pool Manager
	Controlling the Lifecycle of a Connection
	Creating a Connection Pool
	Starting a Connection Pool
	Stopping a Connection Pool
	Destroying a Connection Pool

	Performing Maintenance on a Connection Pool
	Refreshing a Connection Pool
	Recycling a Connection Pool
	Purging a Connection Pool

	Accessing JMX-based Management
	UniversalConnectionPoolManagerMBean
	UniversalConnectionPoolMBean

	8 Using Oracle RAC Features
	Overview of Oracle RAC Features
	Using Fast Connection Failover
	Example Fast Connection Failover Configuration
	Enabling Fast Connection Failover
	Configuring ONS
	Remote Configuration
	Client-Side Daemon Configuration

	Configuring the Connection URL

	Using Run-Time Connection Load Balancing
	Setting Up Run-Time Connection Load Balancing

	Using Connection Affinity
	Setting Up Connection Affinity
	Creating a Connection Affinity Callback
	Registering a Connection Affinity Callback
	Removing a Connection Affinity Callback

	9 Diagnosing a Connection Pool
	Pool Statistics
	Dynamic Monitoring Service Metrics
	Viewing RAC Statistics
	Fast Connection Failover Statistics
	Run-Time Connection Load Balance Statistics
	Connection Affinity Statistics

	Setting Up Logging in UCP
	Using a Logging Properties File
	Using UCP for JDBC and JDK API
	Supported Log Levels

	Exceptions and Error Codes

	A Error Codes Reference
	General Structure of UCP Error Messages
	Connection Pool Layer Error Messages
	JDBC Data Sources and Dynamic Proxies Error Messages

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W
	X

