

Oracle® Database
2 Day + Data Warehousing Guide

11g Release 2 (11.2)

E25555-03

February 2012

Oracle Database 2 Day + Data Warehousing Guide, 11g Release 2 (11.2)

E25555-03

Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify,
license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means.
Reverse engineering, disassembly, or decompilation of this software, unless required by law for
interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the
restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable
by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information on content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle
Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your
access to or use of third-party content, products, or services.

iii

Contents

Preface ... xi

Audience... xi
Documentation Accessibility ... xi
Related Documents ... xi
Conventions .. xii

Part I Building Your Data Warehouse

1 Introduction to Data Warehousing

About This Guide... 1-1
Before Using This Guide ... 1-1
What This Guide Is Not... 1-2

What Is a Data Warehouse? .. 1-2
The Key Characteristics of a Data Warehouse... 1-2
Common Oracle Data Warehousing Tasks .. 1-3

Tasks Illustrated in This Guide ... 1-3
Tools for Administering the Data Warehouse .. 1-4

2 Setting Up Your Data Warehouse System

General Steps for Setting Up a Data Warehouse System ... 2-1
Preparing the Environment .. 2-1

Balanced Hardware Configuration ... 2-2
How Many CPUs and What Clock Speed Do I Need?.. 2-2
How Much Memory Do I Need? .. 2-2
How Many Disks Do I Need? ... 2-3
How Do I Determine Sufficient I/O Bandwidth? .. 2-3

Verifying the Data Warehouse Hardware Configuration.. 2-4
About the dd Utility ... 2-4
Example: Using the dd Utility... 2-4
About the Orion Utility.. 2-5

Setting Up a Database for a Data Warehouse ... 2-5
How Should I Set the Memory Management Parameters?.. 2-5
Example: Setting an Initialization Parameter... 2-6
What Other Initialization Parameter Settings Are Important?.. 2-6

Accessing Oracle Warehouse Builder... 2-8

iv

Installing the Oracle Warehouse Builder Demonstration .. 2-9

3 Identifying Data Sources and Importing Metadata

Overview of Data Sources .. 3-1
General Steps for Importing Metadata from Sources ... 3-1
About Workspaces, Projects, and Other Devices in Warehouse Builder 3-2
Example: Importing Metadata from Flat Files .. 3-2

Specifying Locations for the Flat Files .. 3-3
Creating Modules in the Project... 3-3
Starting the Import Metadata Wizard... 3-4
Using the Flat File Sample Wizard .. 3-4
Importing the Flat File Data.. 3-5

4 Defining Warehouses in Oracle Warehouse Builder

General Steps for Defining a Relational Target Warehouse .. 4-1
Identifying the Warehouse Target Schema.. 4-2
About Flat File Sources in Warehouse Builder... 4-3

Exercise: Adding External Tables to the Target Module.. 4-3
About Dimensions ... 4-3

Exercise: Understanding Dimensions ... 4-4
About Levels.. 4-5
Defining Level Attributes .. 4-5
Defining Hierarchies .. 4-6
Dimension Roles ... 4-6
Level Relationships... 4-6
Dimension Example.. 4-7
Control Rows ... 4-7

Implementing a Dimension .. 4-8
Star Schema.. 4-8
Binding ... 4-9

About Cubes... 4-11
Defining a Cube... 4-11

Cube Measures ... 4-11
Cube Dimensionality... 4-11
Cube Example... 4-12

Implementing a Cube ... 4-12
Relational Implementation of a Cube ... 4-12
Binding .. 4-13

Part II Loading Data into Your Data Warehouse

5 Defining ETL Logic

About Mappings and Operators.. 5-1
Summary of Steps for Defining Mappings... 5-2
Creating a Mapping ... 5-2

Types of Operators... 5-3

v

Adding Operators... 5-3
Adding Operators that Bind to Workspace Objects.. 5-5

Create Unbound Operator with No Attributes .. 5-5
Select from Existing Workspace Object and Bind .. 5-5

Editing Operators ... 5-6
Connecting Operators, Groups, and Attributes ... 5-6

Connecting Operators ... 5-7
Connecting Groups .. 5-7

Example: Using the Mapping Editor to Create Staging Area Tables 5-8
Connecting Attributes ... 5-9

Setting Operator, Group, and Attribute Properties .. 5-10
Synchronizing Operators and Workspace Objects ... 5-10

Synchronizing an Operator.. 5-11
Synchronizing from a Workspace Object to an Operator ... 5-12

Synchronizing Operators Based on Workspace Objects .. 5-12
Synchronizing from an Operator to a Workspace Object ... 5-13

6 Deploying to Target Schemas and Executing ETL Logic

About Deployment .. 6-1
What is a Control Center? ... 6-2
Configuring the Physical Details of Deployment.. 6-2
Deployment Actions .. 6-3
The Deployment Process... 6-3

Deploying Objects ... 6-3
Starting ETL Jobs.. 6-4

Viewing the Data.. 6-4

Part III Reporting on a Data Warehouse

7 SQL for Reporting and Analysis

Use of SQL Analytic Capabilities to Answer Business Queries... 7-1
How to Add Totals to Reports Using the ROLLUP Function ... 7-2

When to Use the ROLLUP Function .. 7-2
Example: Using the ROLLUP Function... 7-2

How to Separate Totals at Different Levels Using the CUBE Function 7-4
When to Use the CUBE Function.. 7-4
Example: Using the CUBE Function .. 7-4

How to Add Subtotals Using the GROUPING Function ... 7-5
When to Use the GROUPING Function .. 7-5
Example: Using the GROUPING Function ... 7-5

How to Combine Aggregates Using the GROUPING SETS Function 7-6
When to Use the GROUPING SETS Function .. 7-7
Example: Using the GROUPING SETS Function... 7-7

How to Calculate Rankings Using the RANK Function .. 7-8
When to Use the RANK Function .. 7-8
Example: Using the RANK Function ... 7-8

vi

How to Calculate Relative Contributions to a Total ... 7-9
Example: Calculating Relative Contributions to a Total ... 7-9

How to Perform Interrow Calculations with Window Functions ... 7-11
Example: Performing Interrow Calculations ... 7-11

How to Calculate a Moving Average Using a Window Function ... 7-12
Example: Calculating a Moving Average... 7-13

Use of Partition Outer Join to Handle Sparse Data .. 7-13
When to Use Partition Outer Join ... 7-14
Example: Using Partition Outer Join.. 7-14

Use of the WITH Clause to Simplify Business Queries .. 7-15
When to Use the WITH Clause ... 7-15
Example: Using the WITH Clause .. 7-15

Part IV Managing a Data Warehouse

8 Refreshing a Data Warehouse

About Refreshing Your Data Warehouse... 8-1
Example: Refreshing Your Data Warehouse.. 8-1

Using Rolling Windows to Offload Data .. 8-5
Example: Using a Rolling Window ... 8-5

9 Optimizing Data Warehouse Operations

Avoiding System Overload .. 9-1
Monitoring System Performance ... 9-1

Monitoring Parallel Execution Performance... 9-1
Monitoring I/O ... 9-2

Using Database Resource Manager ... 9-3
Optimizing the Use of Indexes and Materialized Views ... 9-4

Example: Optimizing Indexes and Materialized Views Using the SQL Access Advisor........ 9-4
Optimizing Storage Requirements ... 9-5

Using Data Compression to Improve Storage ... 9-5

10 Eliminating Performance Bottlenecks

Verifying That SQL Runs Efficiently .. 10-1
Analyzing Optimizer Statistics ... 10-1
Analyzing an Execution Plan .. 10-2

Example: Analyzing Explain Plan Output ... 10-2
Using Hints to Improve Data Warehouse Performance.. 10-3

Example: Using Hints to Improve Data Warehouse Performance................................... 10-4
Using Advisors to Verify SQL Performance ... 10-4

Improving Performance by Minimizing Resource Use ... 10-5
Improving Performance: Partitioning.. 10-5

Improving Performance: Partition Pruning ... 10-5
Improving Performance: Partitionwise Joins... 10-6
Example: Evaluating Partitioning with the SQL Access Advisor..................................... 10-6

Improving Performance: Query Rewrite and Materialized Views.. 10-7

vii

Improving Performance: Indexes ... 10-8
Improving Performance: Compression.. 10-8

Improving Performance: DBMS_COMPRESSION Package.. 10-8
Improving Performance: table_compress clause of CREATE TABLE and ALTER TABLE
10-8

Using Resources Optimally... 10-9
Optimizing Performance with Parallel Execution.. 10-9

How Parallel Execution Works .. 10-10
Setting the Degree of Parallelism... 10-10
Example: Setting the Degree of Parallelism ... 10-10

About Wait Events .. 10-10

11 Backing up and Recovering a Data Warehouse

How Should I Handle Backup and Recovery for a Data Warehouse? .. 11-1
Strategies and Best Practices for Backup and Recovery .. 11-2

Best Practice A: Use ARCHIVELOG Mode... 11-2
Is Downtime Acceptable? ... 11-3

Best Practice B: Use RMAN ... 11-3
Best Practice C: Use Read-Only Tablespaces .. 11-4
Best Practice D: Plan for NOLOGGING Operations.. 11-4

Extraction, Transformation, and Loading .. 11-5
The ETL Strategy and NOLOGGING Operations ... 11-5
Sizing the Block Change Tracking File .. 11-6

Incremental Backup ... 11-7
The Incremental Approach.. 11-7

Best Practice E: Not All Tablespaces Are Equally Important ... 11-7

12 Securing a Data Warehouse

Overview of Data Warehouse Security ... 12-1
Why Is Security Necessary for a Data Warehouse? ... 12-1

Using Roles and Privileges for Data Warehouse Security .. 12-2
Using a Virtual Private Database in Data Warehouses .. 12-2

How a Virtual Private Database Works... 12-3
Overview of Oracle Label Security.. 12-3

How Oracle Label Security Works ... 12-3
How Data Warehouses Benefit from Labels ... 12-4

Overview of Fine-Grained Auditing in Data Warehouses.. 12-4
Overview of Transparent Data Encryption in Data Warehouses ... 12-4

Index

viii

ix

List of Figures

3–1 Import Metadata Wizard ... 3-4
3–2 The SOURCE Flat File Module ... 3-5
4–1 Star Schema Implementation of Products Dimension... 4-9
4–2 Implementation of the Sales Cube... 4-13
5–1 Mappings Node on the Project Navigator .. 5-3
5–2 Mapping Editor Showing a Table Operator Source... 5-5
5–3 Connected Operators in a Mapping... 5-7
5–4 Unbound Staging Table without Attributes and Source Table.. 5-8
5–5 Create and Bind Dialog Box .. 5-9
5–6 Target Load Order Dialog Box... 5-10
5–7 Property Inspector for a Table Operator .. 5-10
5–8 Synchronizing an Operator .. 5-12
5–9 Synchronizing from a Different Workspace Object .. 5-12
6–1 Overview of Partition Exchange Loading ... 6-1
6–2 PEL Configuration Properties ... 6-2
6–3 Mapping with Multiple Sources ... 6-3
6–4 Publish_Sales_Summary Mapping... 6-4
6–5 Configuration Properties for Table ORDER_SUMMARY .. 6-5
6–6 Automatically Generated "Value Less Than" Setting .. 6-6
6–7 Configure an Index as a Local Index.. 6-7
6–8 Specify a Constraint with USING INDEX option ... 6-8
7–1 Schedules on the Project Navigator.. 7-4
8–1 Metadata Dependency Manager... 8-2
8–2 Lineage Analysis Diagram for ADDRESS_EXT_TABLE .. 8-3
8–3 Impact Analysis Diagram for ADDRESS_EXT_TABLE.. 8-3
8–4 Lineage and Impact Analysis Diagram ... 8-4
8–5 Expanded Icons in an LIA Diagram... 8-5
11–1 Monitoring Parallel Execution ... 11-2
11–2 Monitoring I/O .. 11-3
11–3 Suggested Improvements ... 11-5
12–1 SQL Tuning Advisor: Recommendations .. 12-5
12–2 Evaluating Partitioning ... 12-7
12–3 Partitioning Results ... 12-7

x

List of Tables

2–1 Throughput Performance Conversion.. 2-3
4–1 Products Dimension Level Details .. 4-7
4–2 Control Rows Created for the Products Dimension ... 4-8
4–3 Dimensionality of the Sales Cube... 4-12
5–1 Operators Synchronized with Workspace Objects .. 5-13

xi

Preface

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database 2 Day + Data Warehousing Guide is for anyone who wants to perform
common day-to-day warehousing tasks with Oracle Database. The main prerequisites
are to have read through Oracle Database 2 Day DBA and to have a basic knowledge of
computers.

In particular, this guide is targeted toward the following groups of users:

■ Oracle DBAs wanting to acquire data warehouse administrative skills

■ DBAs who have some data warehouse background but are new to Oracle
Database

Documentation Accessibility
For information about Oracle’s commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are
hearing impaired.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database 2 Day DBA

■ Oracle Database Data Warehousing Guide

xii

■ Oracle Database Administrator's Guide

■ Oracle Warehouse Builder Concepts

■ Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide

■ Oracle Warehouse Builder Sources and Targets Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Part I
Building Your Data Warehouse

Part I discusses building a data warehouse and includes:

■ Chapter 1, "Introduction to Data Warehousing"

■ Chapter 2, "Setting Up Your Data Warehouse System"

■ Chapter 3, "Identifying Data Sources and Importing Metadata"

■ Chapter 4, "Defining Warehouses in Oracle Warehouse Builder"

Introduction to Data Warehousing 1-1

1
Introduction to Data Warehousing

As the person responsible for administering, designing, and implementing a data
warehouse, you also oversee the overall operation of Oracle data warehousing and
maintenance of its efficient performance within your organization.

This section contains the following topics:

■ About This Guide

■ What Is a Data Warehouse?

■ Tasks Illustrated in This Guide

■ Tools for Administering the Data Warehouse

About This Guide
Oracle Database 2 Day + Data Warehousing Guide teaches you how to perform common
day-to-day tasks necessary to implement and administer a data warehouse. The goal
of this guide is to introduce you to the data warehousing solutions available in Oracle
Database.

This guide teaches you how to perform common administration and design tasks
needed to keep the data warehouse operational, including how to perform basic
performance monitoring tasks.

The primary interfaces used in this guide are Oracle Enterprise Manager (Enterprise
Manager), Oracle Warehouse Builder (Warehouse Builder), and SQL*Plus.

Before Using This Guide
Before using this guide, you should perform the following preparations:

■ Become familiar with using Oracle Enterprise Manager (EM) to administer Oracle
Database, as described in Oracle Database 2 Day DBA.

■ Obtain the necessary tools described in "Tools for Administering the Data
Warehouse" on page 1-4.

See Also:

■ Oracle Enterprise Manager Administrator's Guide

■ Oracle Warehouse Builder Concepts

■ SQL*Plus Quick Reference

What Is a Data Warehouse?

1-2 Oracle Database 2 Day + Data Warehousing Guide

What This Guide Is Not
Oracle Database 2 Day + Data Warehousing Guide is not an exhaustive discussion of
implementing a data warehouse on Oracle. The objective for this guide is to describe
why and when tasks must be performed in a task-oriented way. Where appropriate, it
describes the concepts necessary for understanding and completing the current task.

For complete conceptual information about these features and detailed instructions for
using them, see the appropriate Oracle documentation as follows:

■ Oracle Database Data Warehousing Guide

■ Oracle Warehouse Builder Sources and Targets Guide

■ Oracle Database Administrator's Guide for a discussion of administrative tasks

■ Oracle Data Mining Concepts for a discussion of data mining

What Is a Data Warehouse?
A data warehouse is a relational or multidimensional database that is designed for
query and analysis. Data warehouses are not optimized for transaction processing,
which is the domain of OLTP systems. Data warehouses usually consolidate historical
and analytic data derived from multiple sources. Data warehouses separate analysis
workload from transaction workload and enable an organization to consolidate data
from several sources.

A data warehouse usually stores many months or years of data to support historical
analysis. The data in a data warehouse is typically loaded through an extraction,
transformation, and loading (ETL) process from one or more data sources such as
OLTP applications, mainframe applications, or external data providers.

Users of the data warehouse perform data analyses that are often time-related.
Examples include consolidation of last year's sales figures, inventory analysis, and
profit by product and by customer. More sophisticated analyses include trend analyses
and data mining, which use existing data to forecast trends or predict futures. The data
warehouse typically provides the foundation for a business intelligence environment.

This guide covers relational implementations, including star schemas.

The Key Characteristics of a Data Warehouse
The key characteristics of a data warehouse are as follows:

■ Some data is denormalized for simplification and to improve performance

■ Large amounts of historical data are used

■ Queries often retrieve large amounts of data

■ Both planned and ad hoc queries are common

■ The data load is controlled

In general, fast query performance with high data throughput is the key to a successful
data warehouse.

See Also: Oracle Database Data Warehousing Guide for more details
regarding multidimensional data warehouses

Tasks Illustrated in This Guide

Introduction to Data Warehousing 1-3

Common Oracle Data Warehousing Tasks
As an Oracle data warehousing administrator or designer, you can expect to be
involved in the following tasks:

■ Configuring an Oracle database for use as a data warehouse

■ Designing data warehouses

■ Performing upgrades of the database and data warehousing software to new
releases

■ Managing schema objects, such as tables, indexes, and materialized views

■ Managing users and security

■ Developing routines used for the extraction, transformation, and loading (ETL)
processes

■ Creating reports based on the data in the data warehouse

■ Backing up the data warehouse and performing recovery when necessary

■ Monitoring the data warehouse's performance and taking preventive or corrective
action as required

In a small-to-midsize data warehouse environment, you might be the sole person
performing these tasks. In large, enterprise environments, the job is often divided
among several DBAs and designers, each with their own specialty, such as database
security or database tuning.

Tasks Illustrated in This Guide
This guide illustrates the following tasks:

1. Configure an Oracle database for use as a data warehouse.

 See Chapter 2, "Setting Up Your Data Warehouse System". This section also
includes instructions on how to access a demonstration that is referenced in
exercises throughout this guide.

2. Take the initial steps in consolidating data.

Follow the instructions in Chapter 3, "Identifying Data Sources and Importing
Metadata".

3. Begin to define the target objects in the warehouse.

Chapter 4, "Defining Warehouses in Oracle Warehouse Builder" describes how to
define external tables, dimensions, and cubes for the target warehouse.

4. Define strategies for extracting, transforming, and loading data into the target.

Chapter 5, "Defining ETL Logic" describes how to define ETL logic to extract data
from the source you identified in step 2, transform the data, and then load it into
the target you designed in step 3.

5. Deploy to target schemas and execute ETL logic.

Chapter 6, "Deploying to Target Schemas and Executing ETL Logic" describes how
to prepare a target schema with code from mappings and also describes how to
subsequently execute that code.

6. Write efficient SQL.

Tools for Administering the Data Warehouse

1-4 Oracle Database 2 Day + Data Warehousing Guide

Read and complete the tasks in Chapter 7, "SQL for Reporting and Analysis". This
section describes how to write efficient SQL.

7. Refresh the data warehouse.

Read and complete the tasks in Chapter 8, "Refreshing a Data Warehouse".

8. Optimize operations.

Read and complete the tasks in Chapter 9, "Optimizing Data Warehouse
Operations".

9. Eliminate performance bottlenecks.

Read and complete the tasks in Chapter 10, "Eliminating Performance
Bottlenecks".

10. Review some basics of data warehouse backup and recovery.

Chapter 11, "Backing up and Recovering a Data Warehouse" describes some
considerations for how to back up and recover a data warehouse.

11. Review some basics of data warehouse security.

Chapter 12, "Securing a Data Warehouse" describes some considerations for how
to create a secure data warehouse.

Tools for Administering the Data Warehouse
The procedures in this guide refer to and sometimes require the following products,
tools, and utilities to achieve your goals with your data warehouse:

■ Oracle Universal Installer

Oracle Universal Installer (OUI) installs your Oracle software and options. It can
automatically start the Database Configuration Assistant (DBCA) to install a
database. OUI and DBCA are included with Oracle Database. See Oracle Universal
Installer User's Guide for Windows and UNIX for optional information.

■ Oracle Enterprise Manager

The primary tool for managing your database is Oracle Enterprise Manager, a
Web-based interface. After you have installed the Oracle software, created or
upgraded a database, and configured the network, you can use Oracle Enterprise
Manager for managing your database. In addition, Oracle Enterprise Manager
also provides an interface for performance advisors and for Oracle utilities such as
SQL*Loader and Recovery Manager. See Oracle Enterprise Manager Administrator's
Guide if you want more detailed information than what is discussed in this guide.

■ Oracle Warehouse Builder

The primary product for populating and maintaining a data warehouse, Oracle
Warehouse Builder provides ETL, data quality management, and metadata
management in a single product.

Warehouse Builder includes a unified repository hosted on Oracle Database.
Warehouse Builder leverages Oracle Database functionality to generate code that
is optimized for loading into and maintaining Oracle Database targets. See Oracle
Warehouse Builder Data Modeling, ETL, and Data Quality Guide for more details and
comprehensive procedures.

■ Oracle Tuning Pack

Tools for Administering the Data Warehouse

Introduction to Data Warehousing 1-5

Oracle Tuning Pack offers a set of technologies that automate the entire database
tuning process, which significantly lowers database management costs and
enhances performance and reliability. The key features of Oracle Tuning Pack that
will be used in this guide are the SQL Access and SQL Tuning Advisors. See Oracle
Database Licensing Information and Oracle Database Performance Tuning Guide.

Note: OUI and Warehouse Builder listed in this section are included
with Oracle Database. Some data quality features of Warehouse
Builder require additional licensing. Oracle Tuning Pack requires
additional licensing.

Tools for Administering the Data Warehouse

1-6 Oracle Database 2 Day + Data Warehousing Guide

Setting Up Your Data Warehouse System 2-1

2
Setting Up Your Data Warehouse System

This chapter describes how to initially configure your data warehouse environment. It
contains the following topics:

■ General Steps for Setting Up a Data Warehouse System

■ Preparing the Environment

■ Setting Up a Database for a Data Warehouse

■ Accessing Oracle Warehouse Builder

General Steps for Setting Up a Data Warehouse System
The procedures in this section describe how to configure Oracle Database for use as a
data warehouse. Subsequently, you configure Oracle Warehouse Builder (OWB),
which leverages Oracle Database and provides graphical user interfaces to design data
management strategies.

To set up a data warehouse system:

1. Size and configure your hardware as described in "Preparing the Environment" on
page 2-1.

2. Install the Oracle Database software. See the installation instructions in Oracle
Database 2 Day DBA or the installation guide for your platform, such as Oracle
Database Installation Guide for Linux

3. Optimize the Database for use as a data warehouse as described in "Setting Up a
Database for a Data Warehouse" on page 2-5.

4. Access the Oracle Warehouse Builder software.

Follow the instructions in "Accessing Oracle Warehouse Builder" on page 2-8.
Subsequently, you can install a demonstration to help you learn how to complete
common data warehousing tasks using Warehouse Builder.

Preparing the Environment
The basic components for a data warehousing architecture are similar to an online
transaction processing (OLTP) system. However, because of the size and volume of
data, the hardware configuration and data throughput requirements for a data
warehouse are unique. The starting point for sizing a data warehouse is the

See Also:

■ See Chapter 3, "Identifying Data Sources and Importing Metadata"

Preparing the Environment

2-2 Oracle Database 2 Day + Data Warehousing Guide

throughput that you require from the system. When sizing, use one or more of the
following criteria:

■ The amount of data accessed by queries during peak time and the acceptable
response time.

■ The amount of data that is loaded within a window of time.

In general, you must estimate the highest throughput required at any given point.

Hardware vendors can recommend balanced configurations for a data warehousing
application and can help you with the sizing. Contact your preferred hardware vendor
for more details.

Balanced Hardware Configuration
A properly sized and balanced hardware configuration is required to maximize data
warehouse performance. The following sections describe important considerations in
achieving this balance:

■ How Many CPUs and What Clock Speed Do I Need?

■ How Much Memory Do I Need?

■ How Many Disks Do I Need?

■ How Do I Determine Sufficient I/O Bandwidth?

How Many CPUs and What Clock Speed Do I Need?
Central processing units (CPUs) provide the calculation capabilities in a data
warehouse. You must have sufficient CPU power to perform the data warehouse
operations. Parallel operations are more CPU-intensive than the equivalent number of
serial operations.

Use the estimated highest throughput as a guideline for the number of CPUs required.
As a rough estimate, use the following formula:

<number of CPUs> = <maximum throughput in MB/s> / 200

When you use this formula, you assume that a CPU can sustain up to about 200 MB
per second. For example, if you require a maximum throughput of 1200 MB per
second, then the system needs <number of CPUs> = 1200/200 = 6 CPUs. A
configuration with 1 server with 6 CPUs can service this system. A 2-node clustered
system could be configured with 3 CPUs in both nodes.

How Much Memory Do I Need?
Memory in a data warehouse is particularly important for processing
memory-intensive operations such as large sorts. Access to the data cache is less
important in a data warehouse because most of the queries access vast amounts of
data. Data warehouses do not have the same memory requirements as mission-critical
OLTP applications.

The number of CPUs is a good guideline for the amount of memory you need. Use the
following simplified formula to derive the amount of memory you need from the
CPUs that you select:

<amount of memory in GB> = 2 * <number of CPUs>

For example, a system with 6 CPUs needs 2 * 6 = 12 GB of memory. Most
standard servers fulfill this requirement.

Preparing the Environment

Setting Up Your Data Warehouse System 2-3

How Many Disks Do I Need?
A common mistake in data warehouse environments is to size the storage based on the
maximum capacity needed. Sizing that is based exclusively on storage requirements
will likely create a throughput bottleneck.

Use the maximum throughput you require to find out how many disk arrays you
need. Use the storage provider's specifications to find out how much throughput a
disk array can sustain. Note that storage providers measure in Gb per second, and
your initial throughput estimate is based on MB per second. An average disk
controller has a maximum throughput of 2 Gb per second, which equals a sustainable
throughput of about (70% * 2 GB/s) /8 = 180 MB/s.

Use the following formula to determine the number of disk arrays you need:

■ <number of disk controllers> = <throughput in MB/s> /
<individual controller throughput in MB/s>

For example, a system with 1200 MB per second throughput requires at least 1200 /
180 = 7 disk arrays.

Ensure you have enough physical disks to sustain the throughput you require. Ask
your disk vendor for the throughput numbers of the disks.

How Do I Determine Sufficient I/O Bandwidth?
The end-to-end I/O system consists of more components than just the CPUs and disks.
A well-balanced I/O system must provide approximately the same bandwidth across
all components in the I/O system. These components include:

■ Host bus adapters (HBAs), the connectors between the server and the storage.

■ Switches, in between the servers and a storage area network (SAN) or network
attached storage (NAS).

■ Ethernet adapters for network connectivity (GigE NIC or Infiniband). In an Oracle
Real Application Clusters (Oracle RAC) environment, you need an additional
private port for the interconnect between the nodes that you should not include
when sizing the system for I/O throughput. The interconnect must be sized
separately, taking into account factors such as internode parallel execution.

■ Wires that connect the individual components.

Each of the components must provide sufficient I/O bandwidth to ensure a
well-balanced I/O system. The initial throughput you estimated and the hardware
specifications from the vendors are the basis to determine the quantities of the
individual components you need. Use the conversion in Table 2–1 to convert the
vendors' maximum throughput numbers in bits into sustainable throughput in bytes.

Table 2–1 Throughput Performance Conversion

Component Bits Bytes Per Second

HBA 2 GB 200 MB

16 Port Switch 8 * 2 GB 1200 MB

Fibre Channel 2 GB 200 MB

GigE NIC 1 GB 80 MB

Inf-2 Gbit 2 GB 160 MB

Preparing the Environment

2-4 Oracle Database 2 Day + Data Warehousing Guide

In addition to having sufficient components to ensure enough I/O bandwidth, the
layout of data on the disk is key to success or failure. If you configured the system for
sufficient throughput across all disk arrays, but if the data that a query will retrieve is
on one disk, then you will not be able to get the required throughput. This is because
having only one disk will be the bottleneck. To avoid such a situation, stripe data
across as many disks as possible, ideally all disks. A stripe size of 256 KB to 1 MB
provides a good balance between multiblock read operations and data spread across
multiple disks.

Verifying the Data Warehouse Hardware Configuration
Before you install Oracle Database, verify your setup on the hardware and
operating-system level. The key point to understand is that if the operating system
cannot deliver the performance and throughput you need, Oracle Database will not
perform according to your requirements. Two tools for verifying throughput are the
dd utility and Orion, an Oracle-supplied tool.

About the dd Utility
A very basic way to validate the operating system throughput on UNIX or Linux
systems is to use the dd utility. The dd utility is a common Unix program whose
primary purpose is the low-level copying and conversion of raw data. Because there is
almost no overhead involved with the dd utility, the output provides a reliable
calibration. Oracle Database can reach a maximum throughput of approximately 90
percent of what the dd utility can achieve.

Example: Using the dd Utility
First, the most important options for using dd are:

bs=BYTES: Read BYTES bytes at a time; use 1 MB
count=BLOCKS: copy only BLOCKS input blocks
if=FILE: read from FILE; set to your device
of=FILE: write to FILE; set to /dev/null to evaluate read performance;
 write to disk would erase all existing data!!!
skip=BLOCKS: skip BLOCKS BYTES-sized blocks at start of input

To estimate the maximum throughput Oracle Database will be able to achieve, you can
mimic a workload of a typical data warehouse application, which consists of large,
random sequential disk access.

The following dd command performs random sequential disk access across two
devices reading a total of 2 GB. The throughput is 2 GB divided by the time it takes to
finish the following command:

dd bs=1048576 count=200 if=/raw/data_1 of=/dev/null &
dd bs=1048576 count=200 skip=200 if=/raw/data_1 of=/dev/null &
dd bs=1048576 count=200 skip=400 if=/raw/data_1 of=/dev/null &
dd bs=1048576 count=200 skip=600 if=/raw/data_1 of=/dev/null &
dd bs=1048576 count=200 skip=800 if=/raw/data_1 of=/dev/null &
dd bs=1048576 count=200 if=/raw/data_2 of=/dev/null &
dd bs=1048576 count=200 skip=200 if=/raw/data_2 of=/dev/null &
dd bs=1048576 count=200 skip=400 if=/raw/data_2 of=/dev/null &
dd bs=1048576 count=200 skip=600 if=/raw/data_2 of=/dev/null &
dd bs=1048576 count=200 skip=800 if=/raw/data_2 of=/dev/null &

In your test, include all the storage devices that you plan to include for your database
storage. When you configure a clustered environment, you run dd commands from
every node.

Setting Up a Database for a Data Warehouse

Setting Up Your Data Warehouse System 2-5

About the Orion Utility
Orion is a tool that Oracle provides to mimic a typical workload on a database system
to calibrate the throughput. Compared to the dd utility, Orion provides the following
advantages:

■ Orion's simulation is closer to the workload the database will produce.

■ Orion enables you to perform reliable write and read simulations within one
simulation.

Oracle recommends you use Orion to verify the maximum achievable throughput,
even if a database has already been installed.

The types of supported I/O workloads are as follows:

■ Small and random

■ Large and sequential

■ Large and random

■ Mixed workloads

For each type of workload, Orion can run tests at different levels of I/O load to
measure performance metrics such as MB per second, I/O per second, and I/O
latency. A data warehouse workload is typically characterized by sequential I/O
throughput, issued by multiple processes. You can run different I/O simulations
depending upon which type of system you plan to build. Examples are the following:

■ Daily workloads when users or applications query the system

■ The data load when users may or may not access the system

■ Index and materialized view builds

■ Backup operations

Setting Up a Database for a Data Warehouse
After you set up your environment and install Oracle Database software, ensure that
you have the database parameters set correctly. Note that there are not many database
parameters that must be set.

As a general guideline, avoid changing a database parameter unless you have good
reason to do so. You can use Oracle Enterprise Manager to set up your data
warehouse. To view various parameter settings, go to the Database page, then click
Server. Under Database Configuration, click Memory Parameters or All
Inititalization Parameters.

How Should I Set the Memory Management Parameters?
Oracle Database memory has the following components:

■ Shared memory: Also called the system global area (SGA), this is the memory
used by the Oracle instance.

■ Session-based memory: Also called program global area (PGA), this is the memory
that is occupied by sessions in the database. It is used to perform database
operations, such as sorts and aggregations.

See Also:

■ Oracle Database Performance Tuning Guide for more information

Setting Up a Database for a Data Warehouse

2-6 Oracle Database 2 Day + Data Warehousing Guide

Oracle Database can automatically tune the distribution of the memory components in
two memory areas. You have a choice between two mutually exclusive options:

■ Set MEMORY_TARGET and MEMORY_MAX_TARGET

■ Set SGA_TARGET and PGA_AGGREGATE_TARGET

If you choose the first option, then you need not set other parameters. The
database manages all memory for you. If you choose the second option, then you
must specify a size for the SGA and a size for the PGA. The database does the rest.

The PGA_AGGREGATE_TARGET parameter is the target amount of memory that
you want the total PGA across all sessions to use. As a starting point, you can use
the following formula to define the PGA_AGGREGATE_TARGET value:

■ PGA_AGGREGATE_TARGET = 3 * SGA_TARGET.

If you do not have enough physical memory for the PGA_AGGREGATE_
TARGET to fit in memory, then reduce PGA_AGGREGATE_TARGET.

■ MEMORY_TARGET and MEMORY_MAX_TARGET

The MEMORY_TARGET parameter enables you to set a target memory size and the
related initialization parameter, MEMORY_MAX_TARGET, sets a maximum target
memory size. The database then tunes to the target memory size, redistributing
memory as needed between the system global area (SGA) and aggregate program
global area (PGA). Because the target memory initialization parameter is dynamic,
you can change the target memory size at any time without restarting the
database. The maximum memory size acts as an upper limit so that you cannot
accidentally set the target memory size too high. Because certain SGA components
either cannot easily shrink or must remain at a minimum size, the database also
prevents you from setting the target memory size too low.

Example: Setting an Initialization Parameter
You can set an initialization parameter by issuing an ALTER SYSTEM statement, as
follows:

ALTER SYSTEM SET SGA_TARGET = 1024M;

What Other Initialization Parameter Settings Are Important?
A good starting point for a data warehouse is the data warehouse template database
that you can select when you run the Database Configuration Assistant (DBCA).
However, any database will be acceptable as long as you ensure you take the
following initialization parameters into account:

■ COMPATIBLE

The COMPATIBLE parameter identifies the level of compatibility that the database
has with earlier releases. To benefit from the latest features, set the COMPATIBLE
parameter to your database release number.

■ OPTIMIZER_FEATURES_ENABLE

To benefit from advanced cost-based optimizer features such as query rewrite,
ensure that the OPTIMIZER_FEATURES_ENABLE parameter is set to the value of
the current database version.

■ DB_BLOCK_SIZE

Setting Up a Database for a Data Warehouse

Setting Up Your Data Warehouse System 2-7

The default value of the DB_BLOCK_SIZE parameter is 8 KB, and appropriate for
most data warehousing needs. If you intend to use table compression, then
consider a larger block size.

■ DB_FILE_MULTIBLOCK_READ_COUNT

The DB_FILE_MULTIBLOCK_READ_COUNT parameter enables reading several
database blocks in a single operating-system read call. Because a typical workload
on a data warehouse consists of many sequential I/Os, ensure you can take
advantage of fewer large I/Os as opposed to many small I/Os. When setting this
parameter, take into account the block size and the maximum I/O size of the
operating system, and use the following formula:

DB_FILE_MULTIBLOCK_READ_COUNT * DB_BLOCK_SIZE =
 <maximum operating system I/O size>

Maximum operating-system I/O sizes vary between 64 KB and 1 MB.

■ PARALLEL_MAX_SERVERS

The PARALLEL_MAX_SERVERS parameter sets a resource limit on the maximum
number of processes available for parallel execution. Parallel operations need at
most twice the number of query server processes as the maximum degree of
parallelism (DOP) attributed to any table in the operation.

Oracle Database sets the PARALLEL_MAX_SERVERS parameter to a default value
that is sufficient for most systems. The default value for the PARALLEL_MAX_
SERVERS parameter is as follows:

(CPU_COUNT x PARALLEL_THREADS_PER_CPU x (2 if PGA_AGGREGATE_TARGET > 0;
otherwise 1) x 5)

This value might not be enough for parallel queries on tables with higher DOP
attributes. Oracle recommends users who expect to run queries of higher DOP to
set PARALLEL_MAX_SERVERS as follows:

2 x DOP x <number_of_concurrent_users>

For example, setting the PARALLEL_MAX_SERVERS parameter to 64 will allow
you to run four parallel queries simultaneously, assuming that each query is using
two slave sets with a DOP of eight for each set.

If the hardware system is neither CPU-bound nor I/O bound, then you can
increase the number of concurrent parallel execution users on the system by
adding more query server processes. When the system becomes CPU-bound or
I/O-bound, however, adding more concurrent users becomes detrimental to the
overall performance. Careful setting of the PARALLEL_MAX_SERVERS parameter
is an effective method of restricting the number of concurrent parallel operations.

■ PARALLEL_ADAPTIVE_MULTI_USER

The PARALLEL_ADAPTIVE_MULTI_USER parameter, which can be TRUE or
FALSE, defines whether or not the server will use an algorithm to dynamically
determine the degree of parallelism for a particular statement depending on the
current workload. To use this feature, set PARALLEL_ADAPTIVE_MULTI_USER to
TRUE.

■ QUERY_REWRITE_ENABLED

To take advantage of query rewrite against materialized views, you must set the
QUERY_REWRITE_ENABLED parameter to TRUE. This parameter defaults to TRUE.

■ QUERY_REWRITE_INTEGRITY

Accessing Oracle Warehouse Builder

2-8 Oracle Database 2 Day + Data Warehousing Guide

The default for the QUERY_REWRITE_INTEGRITY parameter is ENFORCED. The
database will rewrite queries against only up-to-date materialized views, if it can
base itself on enabled and validated primary, unique, and foreign key constraints.

In TRUSTED mode, the optimizer trusts that the data in the materialized views is
current, and the hierarchical relationships declared in dimensions and RELY
constraints are correct.

■ STAR_TRANSFORMATION_ENABLED

To take advantage of highly optimized star transformations, set the STAR_
TRANSFORMATION_ENABLED parameter to TRUE.

Accessing Oracle Warehouse Builder
Oracle Warehouse Builder (OWB) enables you to design and deploy various types of
data management strategies, including traditional data warehouses.

To enable OWB:

1. Ensure that you have access to either Oracle Database Enterprise Edition or
Standard Edition.

Oracle Database 11g comes with Warehouse Builder server components
preinstalled. This includes a schema for the Warehouse Builder repository.

2. To use the default Warehouse Builder schema installed in Oracle Database, first
unlock the schema as follows:

Connect to SQL*Plus as the SYS or SYSDBA user and enter the following
commands:

SQL> ALTER USER OWBSYS ACCOUNT UNLOCK;

SQL> ALTER USER OWBSYS IDENTIFIED BY owbsys_passwd;

3. Start the Warehouse Builder Design Center.

For Windows, select Start, Programs, Oracle, Warehouse Builder, and then
Design Center.

For UNIX and Linux, locate owb home/owb/bin/unix and then run
owbclient.sh

4. Define a workspace and assign a user to the workspace.

In the single Warehouse Builder repository, you can define multiple workspaces
with each workspace corresponding to a set of users working on related projects.
For instance, you could create a workspace for each of the following
environments: development, test, and production.

For simplicity, create one workspace called MY_WORKSPACE and assign a user.

In the Design Center dialog box, click Show Details and then Workspace
Management.

The Repository Assistant appears.

Follow the prompts and accept the default settings in the Repository Assistant to
create a workspace and assign a user as the workspace owner.

5. Log in to the Design Center with the user name and password you created.

See Also: Oracle Warehouse Builder Installation and Administration
Guide for Windows and Linux

Accessing Oracle Warehouse Builder

Setting Up Your Data Warehouse System 2-9

Installing the Oracle Warehouse Builder Demonstration
In subsequent topics, this guide uses exercises from Oracle By Example (OBE) series
for Oracle Warehouse Builder to show how to consolidate data from multiple flat file
sources, transform the data, and load it into a new relational target.

The exercises and examples are available on Oracle Technology Network (OTN) at
http://www.oracle.com/webfolder/technetwork/tutorials/obe/db/10g
/r2/owb/owb10gr2_obe_series/owb10g.htm. To help you learn the product, the
demonstration provides you with flat file data and scripts that create various
Warehouse Builder objects. The OBE pages provide additional information about
OWB and the latest information about the exercises.

To perform the Warehouse Builder exercises presented in this guide:
1. Download the demonstration.

■ Go to the location for OWB examples, which is available on OTN from the
following location:

http://www.oracle.com/webfolder/technetwork/tutorials/obe/
db/10g/r2/owb/owb10gr2_obe_series/owb10g.htm

■ Click the link for the Oracle By Example (OBE) set for the latest release.

The demonstration is a set of files in a ZIP archive called owbdemo_files.zip.

The ZIP archive includes a SQL script, two files in comma-separated values
format, and scripts written in Tcl.

2. (Optional) Download the xsales.zip file from the same link, which includes
XSALES table data.

3. Edit the script owbdemoinit.tcl.

The script owbdemoinit.tcl defines and sets variables used by the other tcl
scripts. Edit the following variables to match the values in your computer
environment:

■ set tempspace TEMP

■ set owbclientpwd workspace_owner

■ set sysuser sys

■ set syspwd pwd

■ set host hostname

■ set port portnumber

■ set service servicename

■ set project owb_project_name

■ set owbclient workspace_owner

■ set sourcedir drive:/newowbdemo

■ set indexspace USERS

■ set dataspace USERS

■ set snapspace USERS

■ set sqlpath drive:/oracle/11.1.0/db_1/BIN

■ set sid servicename

Accessing Oracle Warehouse Builder

2-10 Oracle Database 2 Day + Data Warehousing Guide

4. Execute the Tcl scripts from the Warehouse Builder scripting utility, OMB Plus.

For Windows, select Start, Programs, Oracle, Warehouse Builder, and then
OMB*Plus.

For UNIX, locate owb home/owb/bin/unix and then execute OMBPlus.sh

At the OMB+> prompt, enter the following command to change to the directory
that contains the scripts:

cd drive:\\newowbdemo\\

Run all of the Tcl scripts in the desired sequence by entering the following
command:

source loadall.tcl

5. Start the Design Center and log in to it as the workspace owner, using the
credentials you specified in the script owbdemoinit.tcl.

6. Verify that you successfully set up the Warehouse Builder client to follow the
demonstration.

In the Design Center, expand the Locations node in the Locations Navigator.
Expand Databases and then Oracle. The Oracle node includes the following
locations:

OWB_REPOSITORY

SALES_WH_LOCATION

When you successfully install the Warehouse Builder demonstration, the Design
Center displays with an Oracle module named EXPENSE_WH.

Identifying Data Sources and Importing Metadata 3-1

3
Identifying Data Sources and Importing

Metadata

This chapter describes how to use Oracle Warehouse Builder to import metadata.

This chapter contains the following topics:

■ Overview of Data Sources

■ General Steps for Importing Metadata from Sources

■ About Workspaces, Projects, and Other Devices in Warehouse Builder

■ Example: Importing Metadata from Flat Files

Overview of Data Sources
In general, the source systems for a data warehouse are typically transaction
processing applications. A sales analysis data warehouse, for instance, extracts data
from an order entry system that records current order activities.

Designing the data extraction process can be problematic. If the source system is
complex and poorly documented, then determining which data to extract can be
difficult. Moreover, it is usually not possible to modify the source system, nor adjust
its performance or availability. To address these problems, first import the metadata.

Metadata is the data that describes the contents of a given object in a data set. The
metadata for a table, for instance, indicates the data type for each column.

For Oracle Database customers, the recommended tool of choice for importing
metadata is Oracle Warehouse Builder (OWB). After you import the metadata into
Warehouse Builder, you can annotate the metadata and design an extraction strategy
independently from the transaction processing application.

General Steps for Importing Metadata from Sources

To import metadata:
1. Complete the instructions for "Accessing Oracle Warehouse Builder" on page 2-8.

2. Download and install the Oracle Warehouse Builder demonstration as described
in "Installing the Oracle Warehouse Builder Demonstration" on page 2-9.

3. Identify the Warehouse Builder project.

See "About Workspaces, Projects, and Other Devices in Warehouse Builder" on
page 3-2.

About Workspaces, Projects, and Other Devices in Warehouse Builder

3-2 Oracle Database 2 Day + Data Warehousing Guide

4. Follow along with the "Example: Importing Metadata from Flat Files" on page 3-2.

The example explains how to specify where the source files are located and how to
start the Metadata Import Wizard. The process for importing data objects such as
files, tables, and views is the same. Therefore, after you complete this example,
you will have a general understanding of how to import all data objects into
Warehouse Builder.

Subsequent Steps
After you successfully define the sources by importing their metadata, you design the
target schema as described in Chapter 4, "Defining Warehouses in Oracle Warehouse
Builder".

Notice that, up to this point, you have only imported metadata and not extracted data.
You design and implement a data extraction strategy in subsequent sections of this
guide.

About Workspaces, Projects, and Other Devices in Warehouse Builder
After you install the Warehouse Builder demonstration and start the Design Center,
you log in to a workspace. The user name and workspace name are displayed along
the top of the Design Center.

Recall that a workspace includes a set of users working on related projects. Security is
an important consideration for determining how many workspaces to create. A
common model is to create separate workspaces for development, testing, and
production. Using this model, you can allow users such as your developers access to
the development and testing workspaces but restrict them from the production
workspace.

You can optionally divide a workspace into projects. In practice, however, workspaces
typically contain only one active project. This is because a project is simply a container
and not suitable for implementing security or establishing subject-oriented groupings.
Security is implemented through workspaces. Establishing subject-oriented groupings
can be accomplished through modules, as discussed later.

A project contains the sets of metadata related to an initiative. For data warehousing,
therefore, include all the metadata for sources and targets in the same project. Also
include all the functions, procedures, transformations, mappings, and other objects
required to implement your initiative. The project contains nodes for each type of
object that you can either create or import into Warehouse Builder. Expand the
different nodes to gain a general understanding of the types of objects you can create
or import.

In the demonstration, the Projects Navigator is displayed on the left side and includes
two projects. MY_PROJECT is a default, pre-seeded project. You can use MY_PROJECT
as your single active project in the workspace. For the purposes of the demonstration,
the OWB_DEMO project is used.

Example: Importing Metadata from Flat Files
This example describes how to import metadata from flat files. Specifically, our
objective is to import the metadata into the OWB_DEMO project such that the two files,
export.csv and expense_categories.csv, display in the Projects Navigator
under the Files node.

Example: Importing Metadata from Flat Files

Identifying Data Sources and Importing Metadata 3-3

To import metadata from flat files:
1. Indicate where the flat files are located as described in "Specifying Locations for

the Flat Files" on page 3-3.

2. Organize OWB_DEMO to receive the incoming flat file metadata as described in
"Creating Modules in the Project" on page 3-3.

3. Indicate which files to import as described in "Starting the Import Metadata
Wizard" on page 3-4.

4. Specify the metadata structure as described in "Using the Flat File Sample Wizard"
on page 3-4.

5. Import the metadata for both flat files as described in "Importing the Flat File
Data" on page 3-5.

Subsequent Steps
After you successfully define the sources by importing their metadata, you design the
target schema as described in Chapter 4, "Defining Warehouses in Oracle Warehouse
Builder".

Notice that, at this point, you have only imported metadata and not extracted data.
You design and implement a data extraction strategy in subsequent sections of this
guide.

Specifying Locations for the Flat Files
Indicate where the flat files are located.

In the Design Center, on the left side is a tab called Locations that contains a node
called Locations. Use the Locations node to indicate where your source data resides.

Expand the Locations node and the nodes within it to gain a general understanding of
the types of source and targets you can access from Warehouse Builder

For this example, right-click the Files node and select New File System Location to
define a location for the flat files.

Follow the prompts in the Create File System Location dialog box. Each location you
define corresponds to a specific directory on your computer file system. Therefore,
consider naming the location based on the drive and directory. For the purposes of this
demonstration, name the location C_NEWOWBDEMO_SOURCEFILES.

Creating Modules in the Project
In the Projects Navigator, organize OWB_DEMO to receive the incoming flat file
metadata.

In a data warehousing implementation, you are likely to have numerous source and
target objects. As a means of organizing these various objects, Warehouse Builder
requires you to create modules. Modules enable you to establish subject-oriented
groupings. Furthermore, each module corresponds to a location that you create in the
Locations Navigator.

In this example, you create a module to contain company sales data. Because you have
only one location for the two flat files, you create one module in the Projects
Navigator. Right-click the Files node under OWB_DEMO and select New Flat File
Module. Name the new module SALES_EXPENSES. For its location, specify the
location you defined in the previous step, C_NEWOWBDEMO_SOURCEFILES.

Example: Importing Metadata from Flat Files

3-4 Oracle Database 2 Day + Data Warehousing Guide

Starting the Import Metadata Wizard
Start the Import Metadata Wizard.

Right-click the module SALES_EXPENSES, select New, and follow the prompts in the
Import Metadata Wizard. The prompts in the wizard vary according to the type of
module you selected and therefore the type of data object you are importing.

In this example, you selected to import two flat files. On the summary page of the
Import Metadata Wizard, select one of the files and then select Sample to launch the
Flat File Sample Wizard.

In the next steps, you sample each file in turn and then select Finish on this page to
import the metadata.

Figure 3–1 shows Sample on the Summary and Import page of the Import Metadata
Wizard.

Figure 3–1 Import Metadata Wizard

Using the Flat File Sample Wizard
Follow the prompts in the Flat File Sample Wizard to specify the metadata structure.

Based on the number of characters you specify to be sampled, the wizard reads the flat
file data and provides you with suggestions as to the structure of the metadata. If the
sample size is too small, the wizard may misinterpret the data and make invalid
suggestions. Accordingly, you can modify and refine the settings in the wizard.

For the purposes of this example, the wizard correctly determines that the file is
delimited, includes a single record type, and the character set is WE8MSWIN1252.
Accept all the default settings presented in the Flat File Wizard.

To become familiar with the various types of files the wizard can sample, notice the
options on the wizard pages and also select Help for additional insights.

After sampling the first flat file, return to the Summary and Import page of Metadata
Import Wizard to sample the second file.

Accept the default setting in the Flat File Wizard as you did for the previous file.

Example: Importing Metadata from Flat Files

Identifying Data Sources and Importing Metadata 3-5

Importing the Flat File Data
Import the metadata for both flat files.

Return again to the Summary and Import page and select Finish.

When you select Finish, the wizard imports the data based on the selections you made
when sampling the data. The two comma separated files now display under the
SALES_EXPENSES module which is under the Files node in OWB_DEMO project.

Figure 3–2 shows the two files after being imported into the SOURCE module.

Figure 3–2 The SOURCE Flat File Module

Example: Importing Metadata from Flat Files

3-6 Oracle Database 2 Day + Data Warehousing Guide

Defining Warehouses in Oracle Warehouse Builder 4-1

4
Defining Warehouses in Oracle Warehouse

Builder

Using Oracle Warehouse Builder (OWB), you can design a data warehouse that is
either relational or dimensional.

Warehouse Builder explicitly separates dimensional design from physical
implementation. You can choose either a relational implementation or a
multidimensional implementation for the dimensional objects using a simple click
operation. Therefore, you can implement the same dimensional object as a relational
target warehouse or a multidimensional warehouse.

This chapter shows you how to design a dimensional model implemented as a
relational target warehouse. You model a small data warehouse consisting of a cube
and two dimensions. Although you can use Warehouse Builder to model complex
snowflake schemas, for the purposes of this demonstration, you model a simple star
schema consisting of a cube with foreign key references to the two dimensions.

This chapter contains the following topics:

■ General Steps for Defining a Relational Target Warehouse

■ Identifying the Warehouse Target Schema

■ About Flat File Sources in Warehouse Builder

■ About Dimensions

■ About Cubes

General Steps for Defining a Relational Target Warehouse
This section provides a procedure for defining a relational target schema.

To define a relational target warehouse:
1. Designate a schema as the warehouse target schema as described in "Identifying

the Warehouse Target Schema" on page 4-2.

2. Define or import source and target objects into the warehouse target module.

In general, you can right-click any node in the warehouse target module and select
either New or Import. Warehouse Builder starts the appropriate wizard to guide
you. Click Help for additional information.

The types of objects you add to the warehouse target module depend on the type
of your source data and the purpose of the data warehouse.

Identifying the Warehouse Target Schema

4-2 Oracle Database 2 Day + Data Warehousing Guide

To continue with the exercises presented in this guide, see "Exercise: Adding
External Tables to the Target Module" on page 4-3 and "Exercise: Understanding
Dimensions" on page 4-4.

3. Configure the source and target objects.

Some objects require additional configuration. After you import or define an
object in the warehouse module, right-click and select Configure to review the
settings and make changes as necessary.

Subsequent Steps
After you successfully define the target warehouse, design a strategy for extracting the
source data, transforming it as necessary, and loading it into the warehouse.

For information about designing the ETL strategy, see Chapter 5, "Defining ETL
Logic".

Identifying the Warehouse Target Schema
In a traditional data warehousing implementation, there is typically only one target
schema, which is the data warehouse target.

To designate a schema as the data warehouse target schema:
1. Register the schema in Warehouse Builder.

In the Globals Navigator panel, expand the Security node. Right-click the Users
node and select New User.

In the Select DB User to Register page of the Create User Wizard, select Create DB
User and follow the prompts. Click Help or the F1 key if you need more
information.

For the purposes of the demonstration, create a new schema and call it EXPENSE_
WH.

2. Specify the location information for the new schema.

In the Locations Navigator, right-click and select New Oracle Location from
Locations under the Oracle node.

Create a location named EXPENSE_WH_LOCATION. Select the option to test the
connection.

3. In the Projects Navigator, associate a module with the schema location.

Recall that in "Example: Importing Metadata from Flat Files" on page 3-2, you
created a module to correspond to a location from which you import metadata. In
a similar way, you must create a module to correspond to the location for the
target schema.

In the OWB_DEMO project, expand the Databases node, right-click the Oracle node,
and select New Oracle Module. Follow the prompts in the Create Module Wizard.
Ensure that you designate the module status as Warehouse Target.

For the purposes of the demonstration, name the module EXPENSE_WH.

4. Familiarize yourself with the new data warehouse target schema.

In the Projects Navigator, expand the node for the newly defined warehouse target
module. Notice the various types of objects listed under the node. These are the
types of objects that you can either define in or import into the module.

About Dimensions

Defining Warehouses in Oracle Warehouse Builder 4-3

About Flat File Sources in Warehouse Builder
The types of objects you add to the target module have implications on the ETL logic
you subsequently design. If your source data originates from flat files, you can choose
to generate either SQL*Loader code or SQL code. Each type of code has its own
advantages.

To utilize SQL*Loader in Warehouse Builder, import the flat files as described in
"Example: Importing Metadata from Flat Files" on page 3-2. To utilize SQL, however,
you must define an external table in the warehouse module as described in "Exercise:
Adding External Tables to the Target Module" on page 4-3.

Exercise: Adding External Tables to the Target Module
External tables are tables that represent data from flat files in a relational format. They
are read-only tables that act like regular source tables in Warehouse Builder. Each
external table you create corresponds to a single record type in an existing flat file.

The objective of this exercise is to create the necessary external tables for the two flat
files that were previously imported. Because both files have a single record type, you
must create only one external table for each file.

To add external tables to the target warehouse module:
1. In the Projects Navigator, expand the Databases node and then the Oracle node.

2. Expand the target module where you want to create the external table.

Expand the EXPENSE_WH module.

3. Right-click the External Tables node and select New External Table.

Warehouse Builder displays the Create External Table wizard. Follow the prompts.

Name the external table EXPENSE_CATEGORIES.When prompted to select a flat
file, select EXPENSE_CATEGORIES_CSV.

4. Repeat the previous step to create an external table called EXPENSE_DATA to
represent EXPORT_CSV.

5. Configure the physical file system details for the two external tables.

Right-click an external table from the module and select Configure. On the
DataFiles node, right-click and select Create. Accept the default name, NEW_
DATAFILE_1. Enter the name of the flat file from which the external table inherits
data. Therefore, specify the data file name as expense_categories.csv for one
external table and export.csv for the other.

About Dimensions
A dimension is a structure that organizes data. Examples of commonly used
dimensions are Customers, Time, and Products.

For relational dimensions, using dimensions improves query performance because
users often analyze data by drilling down on known hierarchies. An example of a
hierarchy is the Time hierarchy of year, quarter, month, day. Oracle Database uses
these defined hierarchies by rewriting queries that retrieve data from materialized
views rather than detail tables.

Typical relational dimension tables have the following characteristics:

■ A single-column primary key populated with values called warehouse keys.

About Dimensions

4-4 Oracle Database 2 Day + Data Warehousing Guide

Warehouse keys provide administrative control over the dimension, support
techniques that preserve dimension history, and reduce the size of cubes.

■ One or more hierarchies that are explicitly defined as dimension objects.
Hierarchies maximize the number of query rewrites performed by the Oracle
server.

■ Dimensions are the primary organizational unit of data in a star schema. Examples
of some commonly used dimensions are Customer, Product, and Time.

A dimension consists of a set of levels and a set of hierarchies defined over these
levels. When you create a dimension, you define the following:

■ Dimension Attributes: A descriptive characteristic of a dimension member. It has
a name and a data type.

■ Levels: Defines the level of aggregation of data. For example, the Products
dimension can have the following levels: Total, Groups, and Product.

■ Level attributes: A descriptive characteristic of a level member. Each level in the
dimension has a set of level attributes.

■ Hierarchies: A logical structure that uses ordered levels or a set of data values (for
a value-based hierarchy) as a means of organizing data. A hierarchy describes
parent-child relationships among a set of levels.

Exercise: Understanding Dimensions
To understand the basic concepts and design of a dimension, you will examine a
predefined dimension.

To become familiar with the dimensions:
1. Open the PRODUCTS dimension in the Dimension Editor.

In the Projects Navigator, navigate to OWB_DEMO, Databases, Oracle, SALES_WH,
and then expand Dimensions. Double-click PRODUCTS.

Warehouse Builder starts the Dimension Editor. The Dimension Editor is the single
interface where you can design, create, and manage a variety of database or
dimensional objects.

2. Observe the dimension attributes.

A dimension attribute is a descriptive characteristic of a dimension member. It has
a name and a data type. A dimension attribute is applicable to one or more levels
in the dimension. They are implemented as level attributes to store data.

The list of dimension attributes must include all the attributes that you may need
for any of the levels in the dimension.

For example, the Products dimension has a dimension attribute called Description.
This attribute is applicable to all the levels (Total, Groups, and Products) and
stores the description for each of the members of these levels.

3. Observe the levels.

The levels in a dimension represent the level of aggregation of data. A dimension
must contain at least one level, except when a dimension contains a value-based
hierarchy. Every level must have level attributes and a level identifier.

For example, the dimension Products can have the following levels: Total, Groups,
and Product.

About Dimensions

Defining Warehouses in Oracle Warehouse Builder 4-5

About Levels
Every level must have two identifiers: a surrogate identifier and a business identifier.
When you create a dimension, each level must implement the dimension attributes
marked as the surrogate identifier and business identifier (attributes, in the case of a
composite business identifier) of the dimension.

A surrogate identifier uniquely identifies each level record across all the levels of the
dimension. It must be composed of a single attribute. Surrogate identifiers enable you
to hook facts to any dimension level as opposed to the lowest dimension level only.

For a dimension that has a relational implementation, the surrogate identifier must be
of the data type NUMBER. Because the value of the surrogate identifier must be unique
across all dimension levels, you use the same sequence to generate the surrogate
identifier of all the dimension levels.

For a relational implementation, the surrogate identifier serves the following purposes:

■ If a child level is stored in a different table from the parent level, each child level
record stores the surrogate identifier of the parent record.

■ In a fact table, each cube record stores only the surrogate identifier of the
dimension record to which it refers. By storing the surrogate identifier, the size of
the fact table that implements the cube is reduced.

A business identifier consists of a user-selected list of attributes. The business
identifier must be unique across the level and is always derived from the natural key
of the data source. The business identifier uniquely identifies the member. For
example, the business identifier of a Product level can be its Universal Product Code
(UPC), which is a unique code for each product.

The business identifier does the following:

■ Identifies a record in business terms

■ Provides a logical link between the fact and the dimension or between two levels

■ Enables the lookup of a surrogate key

When you populate a child level in a dimension, you must specify the business
identifier of its parent level. When you populate a cube, you must specify the business
identifier of the dimension level to which the cube refers.

A parent identifier is used to annotate the parent reference in a value-based hierarchy.

For example, an EMPLOYEE dimension with a value-based hierarchy, has the following
dimension attributes: ID, FIRST_NAME, LAST_NAME, EMAIL, PHONE, JOB_ID, HIRE_
DATE, and MANAGER_ID. In this dimension, ID is the surrogate identifier and
MANAGER_ID is the parent identifier.

Defining Level Attributes
A level attribute is a descriptive characteristic of a level member. Each level in the
dimension has a set of level attributes. To define level attributes, you select the
dimension attributes that the level will implement. A level attribute has a distinct
name and a data type. The data type is inherited from the dimension attribute that the
level attribute implements. The name of the level attribute can be modified to be
different from that of the dimension attribute that it implements.

Every level must implement the attribute marked as the surrogate identifier and the
business identifier in the set of the dimension attributes.

About Dimensions

4-6 Oracle Database 2 Day + Data Warehousing Guide

Defining Hierarchies
A dimension hierarchy is a logical structure that uses ordered levels or a set of data
values (for a value-based hierarchy) as a means of organizing data. A hierarchy
describes parent-child relationships among a set of levels. A level-based hierarchy
must have at least one level. A level can be part of more than one hierarchy.

For example, the Time dimension can have the following two hierarchies:

Fiscal Hierarchy: Fiscal Year > Fiscal Quarter > Fiscal Month > Fiscal Week > Day

Calendar Hierarchy: Calendar Year > Calendar Quarter > Calendar Month > Day

All hierarchies must be strict 1:n relationships. One record in a parent level
corresponds to multiple records in a child level, but one record in a child level
corresponds to only one parent record within a hierarchy.

Dimension Roles
A dimension role is an alias for a dimension. In a data warehouse, a cube can refer to
the same dimension multiple times, without requiring the dimension to be stored
multiple times. Multiple references to the same dimension may cause confusion. To
avoid confusion, you create an alias for each reference to the dimension, thus allowing
the joins to be instantly understandable. In such cases, the same dimension performs
different dimension roles in the cube.

For example, a sales record can have the following three time values:

■ Time the order is booked

■ Time the order is shipped

■ Time the order is fulfilled

Instead of creating three time dimensions and populating them with data, you can use
dimension roles. Model one time dimension and create the following three roles for
the time dimension: order booked time, order shipped time, and order fulfillment
time. The sales cube can refer to the order time, ship time, and fulfillment time
dimensions.

When the dimension is stored in the database, only one dimension is created, and each
dimension role references this dimension. When the dimension is stored in the OLAP
catalog, Warehouse Builder creates a dimension for each dimension role. Thus, if a
time dimension has three roles, three dimensions are created in the OLAP catalog.
However, all three dimensions are mapped to the same underlying table. This is a
workaround because the OLAP catalog does not support dimension roles.

Level Relationships
A level relationship is an association between levels in a dimension hierarchy. Level
relationships are implemented using level attributes that store the reference to the
parent level in the hierarchy.

For example, the Products dimension has the following hierarchy: Total > Groups >
Product. Warehouse Builder creates two level relationships: Product to Groups and
Groups to Total. Two new attributes implement this level relationship: one in the
Product level and one in the Groups level. These attributes store the surrogate ID of
the parent level.

Note: Dimension roles can be created for dimensions that have a
relational implementation only.

About Dimensions

Defining Warehouses in Oracle Warehouse Builder 4-7

Dimension Example
An example of a dimension is the Products dimension that you use to organize
product data. Table 4–1 lists the levels in the Products dimension and the surrogate
identifier and business identifier for each of the levels in the dimension.

The Products dimension contains the following hierarchy:

Hierarchy 1: Total > Groups > Product

Control Rows
Warehouse Builder creates control rows that enable you to link fact data to a
dimension at any level. For example, you may want to reuse a Time dimension in two
different cubes to record the budget data at the month level and the actual data at the
day level. Because of the way dimensions are loaded with control rows, you can
perform this action without any additional definitions. Each member in a dimension
hierarchy is represented using a single record.

All control rows have negative dimension key values starting from -2. For each level
value of higher levels, a row is generated that can act as a unique linking row to the
fact table. All the lower levels in this linking or control rows are nulled out.

Consider the Products dimension described in "Dimension Example" on page 4-7. You
load data into this dimension from a table that contains four categories of products.
Warehouse Builder inserts control rows in the dimension as shown in Table 4–2. These
rows enable you to link to a cube at any dimension level. Note that the table does not
contain all the dimension attribute values.

Table 4–1 Products Dimension Level Details

Level Attribute Name Identifier

Total ID Surrogate

Name Business

Description

Groups ID Surrogate

Name Business

Description

Product ID Surrogate

UPC Business

Name

Description

Package Type

Package Size

Table 4–2 Control Rows Created for the Products Dimension

Dimension Key Total Name Groups Name Product Name

-3 TOTAL

-9 TOTAL Hardware

-10 TOTAL Software

-11 TOTAL Electronics

About Dimensions

4-8 Oracle Database 2 Day + Data Warehousing Guide

To obtain the real number of rows in a dimension, count the number of rows by
including a WHERE clause that excludes the NULL rows. For example, to obtain a count
on Products, count the number of rows including a WHERE clause to exclude NULL
rows in Product.

Implementing a Dimension
Implementing a dimension consists of specifying how the dimension and its data are
physically stored. Warehouse Builder enables several types of implementations for
dimensional objects, including multi-dimensional implementations. However, this
guide describes a relational implementation only.

Star Schema
In a star schema implementation, Warehouse Builder stores the dimension data in a
single table. Because the same table or view stores data for more than one dimension
level, you must specify a dimension key column in the table. The dimension key
column is the primary key for the dimension. This column also forms the foreign key
reference to the cube.

Each level implements a subset of dimension attributes. By default, the level attribute
name is the same as the dimension attribute name. To avoid name conflicts caused by
all level data being stored in the same table, Warehouse Builder uses the following
guidelines for naming in a star table:

■ If the level attribute name is not unique, Warehouse Builder prefixes it with the
name of the level.

■ If the level attribute name is unique, Warehouse Builder does not use any prefix.

For example, if you implement the Products dimension using a star schema,
Warehouse Builder uses a single table to implement all the levels in the dimension.

Figure 4–1 displays the star schema implementation of the Products dimension. The
attributes in all the levels are mapped to different columns in a single table called
PRODUCTS. The column called DIMENSION_KEY stores the surrogate ID for the
dimension and is the primary key of the table.

-12 TOTAL Peripherals

Note: To ensure that no prefixes are used, you must explicitly change
the level attribute name in the Create Dimension wizard or the Data
Object Editor.

Table 4–2 (Cont.) Control Rows Created for the Products Dimension

Dimension Key Total Name Groups Name Product Name

About Dimensions

Defining Warehouses in Oracle Warehouse Builder 4-9

Figure 4–1 Star Schema Implementation of Products Dimension

Binding
When you perform binding, you specify the database columns that will store the data
of each attribute and level relationship in the dimension. You can perform either auto
binding or manual binding for a dimension.

Auto Binding When you perform auto binding, Warehouse Builder binds the
dimension object attributes to the database columns that store their data. When you
perform auto binding for the first time, Warehouse Builder also creates the tables that
are used to store the dimension data.

When you perform auto binding on a dimension that is already bound, Warehouse
Builder uses the following rules:

■ If the implementation method of the dimension remains the same, Warehouse
Builder rebinds the dimensional object to the existing implementation objects.

For example, you create a Products dimension using the star schema
implementation method and perform auto binding. The dimension data is stored
in a table called PRODUCTS. You modify the dimension definition at a later date
but retain the implementation method as star schema. When you now auto bind
the Products dimension, Warehouse Builder rebinds the Products dimension
attributes to the same implementation tables.

■ If the implementation method of a dimension is changed, Warehouse Builder
deletes the old implementation objects and creates a new set of implementation
tables. If you want to retain the old implementation objects, you must first unbind
the dimensional object and then perform auto binding. For more information
about implementation methods, see "Star Schema" on page 4-8.

For example, you create a Products dimension using the star schema
implementation method and bind it to the implementation table. You now edit this
dimension and change its implementation method to snowflake schema. When
you now perform auto binding for the modified Products dimension, Warehouse
Builder deletes the table that stores the dimension data, creates new

About Dimensions

4-10 Oracle Database 2 Day + Data Warehousing Guide

implementation tables, and binds the dimension attributes and relationships to the
new implementation tables.

To perform auto binding:
1. In the Projects Navigator, select the dimension.

2. From the File menu, choose Bind.

If the Bind option is not enabled, then check if the dimension is a relational
dimension and that the Manual options is not set in the Implementation section of
the Storage tab.

Auto binding uses the implementation settings described in "Star Schema" on page 4-8.

Manual Binding You would typically use manual binding to bind existing tables to a
dimension. Use manual binding if no auto binding or rebinding is required.

To perform manual binding for a dimension:
1. Create the implementation objects (tables or views) that you will use to store the

dimension data.

In the case of relational dimensions, create the sequence used to load the surrogate
identifier of the dimension. You can also choose to use an existing sequence.

2. In the Projects Navigator, right-click the dimension and select Open.

The Dimension Editor is opened.

3. Go to the Physical Bindings tab.

4. From the Component Palette, drag and drop the operator that represents the
implementation object onto the canvas.

Warehouse Builder displays the Add a New or Existing Object dialog box. For
example, if the dimension data is stored in a table, drag a Table operator from the
Component Palette and drop it onto the canvas. The Add a New or Existing Table
dialog box is displayed.

5. Choose the Select an existing Object option and then select the data object from
the list of objects displayed in the selection tree.

6. Click OK.

A node representing the object that you just added is displayed on the canvas.

7. If more than one data object is used to store the dimension data, perform steps 4 to
6 for each data object.

8. Map the attributes in each level of the dimension to the columns that store their
data. Hold down your mouse on the dimension attribute, drag, and then drop on
the column that stores the attribute value.

Also map the level relationships to the database column that store their data.

For example, for the Products dimension described in "Dimension Example" on
page 4-7, the attribute Name in the Groups level of the Products dimension is
stored in the Group_name attribute of the Products_tab table. Hold down the
mouse on the Name attribute, drag, and drop on the Group_name attribute of the
Products_tab table.

About Cubes

Defining Warehouses in Oracle Warehouse Builder 4-11

About Cubes
Cubes contain measures and link to one or more dimensions. The axes of a cube
contain dimension members and the body of the cube contains measure values. Most
measures are additive. For example, sales data can be organized into a cube whose
edges contain values for Time, Products, and Customers dimensions and whose body
contains values from the measures Value sales, and Dollar sales.

A cube is linked to dimension tables over foreign key constraints. Because data
integrity is vital, these constraints are critical in a data warehousing environment. The
constraints enforce referential integrity during the daily operations of the data
warehouse.

Data analysis applications typically aggregate data across many dimensions. This
enables them to look for anomalies or unusual patterns in the data. Using cubes is the
most efficient way of performing these type of operations. In a relational
implementation, when you design dimensions with warehouse keys, the cube row
length is usually reduced. This is because warehouse keys are shorter than their
natural counterparts. This results is a smaller amount of storage space needed for the
cube data.

A typical cube contains:

■ A primary key defined on a set of foreign key reference columns or, in the case of a
data list, on an artificial key or a set of warehouse key columns. When the cube is a
data list, the foreign key reference columns do not uniquely identify each row in
the cube.

■ A set of foreign key reference columns that link the table with its dimensions.

Defining a Cube
A cube consists of the set of measures defined over a set of dimensions. To create a
cube, you must define the following:

■ Cube Measures

■ Cube Dimensionality

Cube Measures
A measure is data, usually numeric and additive, that can be examined and analyzed.
Examples of measures include sales, cost, and profit. A cube must have one or more
measures. You can also perform aggregation of measures. Only numeric measures can
be aggregated.

Cube Dimensionality
A cube is defined by a set of dimensions. A cube can refer to a level that is not the
lowest level in a dimension.

For cubes that use a pure relational implementation, you can reuse the same
dimension multiple times with the help of dimension roles. For more information
about dimension roles, see "Dimension Roles" on page 4-6.

Before you validate a cube, ensure that all the dimensions that the cube references are
valid.

To define a dimension reference, specify the following:
■ The dimension and the level within the dimension to which the cube refers.

About Cubes

4-12 Oracle Database 2 Day + Data Warehousing Guide

For a cube that uses a relational implementation, you can refer to intermediate
levels in a dimension. Warehouse Builder supports a reference to the non
surrogate identifier of a level, for example, the business keys.

■ For dimensions that use a relational implementation, a dimension role for each
dimension to indicate what role the dimension reference is performing in the cube.
Specifying the dimension role is optional.

Cube Example
The Sales cube stores aggregated sales data. It contains the following two measures:
Value_sales and Dollar_sales.

■ Value_sales stores the amount of the sale in terms of the quantity sold.

■ Dollar_sales stores the amount of the sale.

Table 4–3 describes the dimensionality of the Sales cube. It lists the name of the
dimension and the dimension level that the cube references.

Implementing a Cube
When you implement a cube, you specify the physical storage details for the cube. As
with dimensions, Warehouse Builder enables you to implement cubes in relational or
multidimensional forms. The relational implementation is described in this guide.

Relational Implementation of a Cube
The database object used to store the cube data is called a fact table. A cube must be
implemented using only one fact table. The fact table contains columns for the cube
measures and dimension references.

To implement a cube:
■ Select a table or materialized view that will store the cube data.

■ For each measure, select a column that will store the measure data.

■ For each dimension reference, select a column that will store the dimension
reference.

Each dimension reference corresponds to a column on the fact table and optionally
a foreign key from the fact table to the dimension table. The 1:n relationships from
the fact tables to the dimension tables must be enforced.

Figure 4–2 displays the bindings for the relational implementation of the Sales cube.
The data for the Sales cube is stored in a table called SALES.

Table 4–3 Dimensionality of the Sales Cube

Dimension Name Level Name

Products Product

Customers Customer

Times Day

About Cubes

Defining Warehouses in Oracle Warehouse Builder 4-13

Figure 4–2 Implementation of the Sales Cube

Binding
When you perform binding, you specify the database columns that will store the data
of each measure and dimension reference of the cube. You can perform auto binding or
manual binding for a cube.

Auto Binding When you perform auto binding, Warehouse Builder creates the table
that stores the cube data and then binds the cube measures and references to the
database columns. For detailed steps on performing auto binding, see "Auto Binding"
on page 4-9.

When you perform auto binding for a cube, ensure that you auto bind the dimensions
that a cube references before you auto bind the cube. You will not be able to deploy the
cube if any dimension that the cube references was auto bound after the cube was last
auto bound.

For example, you create the SALES cube that references the TIMES and PRODUCTS
dimensions and perform auto binding for the cube. You later modify the definition of
the PRODUCTS dimension. If you now attempt to auto bind the SALES cube again,
Warehouse Builder generates an error. You must first auto bind the PRODUCTS
dimensions and then auto bind the cube.

Manual Binding In manual binding, you must first create the table or view that stores
the cube data and then map the cube references and measures to the database columns
that store their data. Alternatively, you can use an existing database table or view to
store the cube data.

To perform manual binding for a cube:
1. Create the table or view that stores the cube data.

2. In the Projects Navigator, right-click the cube and select Open.

The Cube Editor is opened.

3. Go to the Physical Bindings tab.

4. From the Component Palette, drag and drop the operator that represents the
implementation object onto the canvas.

Warehouse Builder displays the Add a New or Existing Object dialog box. For
example, if the cube data is stored in a table, drag a Table operator from the
Component Palette and drop it onto the canvas. The Add a New or Existing Table
dialog box is displayed.

About Cubes

4-14 Oracle Database 2 Day + Data Warehousing Guide

5. Choose Select an existing object and then select the data object from the list of
objects displayed in the selection tree.

6. Click OK.

A node representing the object that you just added is displayed on the canvas.

7. Map the measures and dimension references of the cube to the columns that store
the cube data. Hold down your mouse on the measure or dimension reference,
drag, and then drop on the data object attribute that stores the measure or
dimension reference.

Part II
Loading Data into Your Data Warehouse

Part II discusses loading data into the data warehouse and includes:

■ Chapter 5, "Defining ETL Logic"

■ Chapter 6, "Deploying to Target Schemas and Executing ETL Logic"

Defining ETL Logic 5-1

5
Defining ETL Logic

After you create and import data object definitions in Oracle Warehouse Builder, you
can design extraction, transformation, and loading (ETL) operations that move data
from sources to targets. In Warehouse Builder, you design these operations in a
mapping.

This chapter contains the following topics:

■ About Mappings and Operators

■ Summary of Steps for Defining Mappings

■ Creating a Mapping

■ Adding Operators

■ Editing Operators

■ Connecting Operators, Groups, and Attributes

■ Setting Operator, Group, and Attribute Properties

■ Synchronizing Operators and Workspace Objects

About Mappings and Operators
Mappings describe a series of operations that extract data from sources, transform it,
and load it into targets. Mappings provide a visual representation of the flow of the
data and the operations performed on the data. When you design a mapping in
Warehouse Builder, you use the Mapping Editor interface.

The basic design element for a mapping is the operator. Use operators to represent
sources and targets in the data flow. Also use operators to define how to transform the
data from source to target. The operators you select as sources have an impact on how
you design the mapping. Based on the operators you select, Warehouse Builder
assigns the mapping to one of the following Mapping Generation Languages:

■ PL/SQL

■ SQL*Loader

■ ABAP

Each of these code languages require you to adhere to certain rules when designing a
mapping.

This guide illustrates how to define a PL/SQL mapping. To define the other types of
mappings, see Oracle Warehouse Builder Data Modeling, ETL, and Data Quality Guide. A
basic rule for defining a PL/SQL mapping is that PL/SQL mappings can contain any
type of source operator other a Flat File operator or a SAP/R3 source.

Summary of Steps for Defining Mappings

5-2 Oracle Database 2 Day + Data Warehousing Guide

Summary of Steps for Defining Mappings

To define a mapping, refer to the following sections:
1. Creating a Mapping on page 5-2

2. Adding Operators on page 5-3

3. Editing Operators on page 5-6

4. Connecting Operators, Groups, and Attributes on page 5-6

5. Setting Operator, Group, and Attribute Properties on page 5-10

6. Configuring Mappings Reference in the Warehouse Builder Online Help

7. When you are satisfied with the mapping design, generate the code by selecting
the Generate icon in the toolbar.

Subsequent Steps
After you design a mapping and generate its code, you can next create a process flow
or proceed directly with deployment followed by execution.

Use process flows to interrelate mappings. For example, you can design a process flow
such that the completion of one mapping triggers an email notification and launches
another mapping.

Deploy the mapping, and any associated process flows you created, and then execute
the mapping.

Creating a Mapping

To create a mapping:
1. Go to the Mappings node in the Projects Navigator. This node is located under a

warehouse target module, under the Databases folder, under the Oracle folder.

Figure 5–1, "Mappings Node on the Projects Navigator" shows the Mappings node
containing maps MAP1. The warehouse target in this example is named ORCL_
MOD.

Figure 5–1 Mappings Node on the Projects Navigator

2. Right-click Mappings and then select New Mapping.

Adding Operators

Defining ETL Logic 5-3

Warehouse Builder opens the Create Mapping dialog box.

3. Enter a name and an optional description for the new mapping.

Select Help to review the rules on naming and describing mappings.

4. Click OK.

Warehouse Builder stores the definition for the mapping and inserts its name in
the Projects Navigator. Warehouse Builder opens a mapping editor for the
mapping and displays the name of the mapping in the title bar.

To open a previously created mapping:
1. From the Projects Navigator, locate a warehouse target module under the

Databases folder and then under the Oracle Database folder.

2. Expand the Mappings node.

3. Open the Mapping Editor in one of the following ways:

■ Double-click a mapping.

■ Select a mapping and then from the File menu, select Open.

■ Select a mapping and press Ctrl + O.

■ Right-click a mapping and select Open.

Warehouse Builder displays the Mapping Editor.

Types of Operators
As you design a mapping, you select operators from the Mapping Editor palette and
drag them onto the canvas.

■ Oracle source and target operators: Use these operators to represent Oracle
Database objects such as Oracle tables, views, materialized views.

■ Remote and non-Oracle source and target Operators: The use of these operator
have special requirements.

■ Data flow operators: Use data flow operators to transform data.

■ Pre/Post Processing operators: Use these operators to perform processing before
or after executing a mapping. The Mapping parameter operator is used to provide
values to and from a mapping.

■ Pluggable mapping operators: A pluggable mapping is a reusable grouping of
mapping operators that acts as a single operator.

Adding Operators
The steps you take to add an operator to a mapping depend on the type of operator
you select. This is because some operators are bound to workspace objects while
others are not. As a general rule, when you add a data source or target operator,
Warehouse Builder creates and maintains a version of that object in the Warehouse
Builder workspace and a separate version for the Mapping Editor. For example, when
you add a table operator to a mapping, Warehouse Builder maintains a separate copy
of the table in the workspace. The separate versions are said to be bound together. That
is, the version in the mapping is bound to the version in the workspace.

To distinguish between the two versions, this section refers to objects in the workspace
either generically as workspace objects or specifically as workspace tables, workspace views,

Adding Operators

5-4 Oracle Database 2 Day + Data Warehousing Guide

and so on. And this section refers to operators in the mapping as table operators, view
operators, and so on. Therefore, when you add a dimension to a mapping, refer to the
dimension in the mapping as the dimension operator and refer to the dimension in the
workspace as the workspace dimension.

Warehouse Builder maintains separate workspace objects for some operators so that
you can synchronize changing definitions of these objects. For example, when you
re-import a new metadata definition for the workspace table, you may want to
propagate those changes to the table operator in the mapping. Conversely, as you
make changes to a table operator in a mapping, you may want to propagate those
changes back to its associated workspace table. You can accomplish these tasks by a
process known as synchronizing. In Warehouse Builder, you can synchronize
automatically. Alternatively, synchronize manually from within the Mapping Editor.

To add an operator to a mapping:
1. Open the Mapping Editor.

2. From the Graph menu, select Add and select an operator. Alternatively, you can
drag an operator icon from the Component Palette and drop it onto the Mapping
Editor canvas.

If you select an operator that you can bind to a workspace object, the Mapping
Editor displays the Add Mapping operator_name dialog box. For information
about how to use this dialog box, click Help.

If you select an operator that you cannot bind to a workspace object, Warehouse
Builder may display a wizard or dialog box to assist you in creating the operator.

3. Follow any prompts Warehouse Builder displays and click OK.

The Mapping Editor displays the operator maximized on the canvas. The operator
name appears in the upper left corner. You can view each attribute name and data
type.

If you want to minimize the operator, click the arrow in the upper right corner and
the Mapping Editor displays the operator as an icon on the canvas.

Adding Operators

Defining ETL Logic 5-5

Figure 5–2 Mapping Editor Showing a Table Operator Source

Adding Operators that Bind to Workspace Objects
When you add an operator that you can bind to a workspace object, the Mapping
Editor displays the Add Mapping operator_name dialog box. Select one of the
following options:

■ Create Unbound Operator with No Attributes

■ Select from Existing Workspace Object and Bind

Create Unbound Operator with No Attributes
Use this option when you want to use the Mapping Editor to define a new workspace
object such as a new staging area table or a new target table.

After you select Create Unbound Operator with No Attributes, type a name for the
new object. Warehouse Builder displays the operator on the canvas without any
attributes.

You can now add and define attributes for the operator as described in "Editing
Operators" on page 5-6. Next, to create the new workspace object in a target module,
right-click the operator and select Create and Bind.

For an example about how to use this option in a mapping design, see "Example:
Using the Mapping Editor to Create Staging Area Tables" on page 5-8.

Select from Existing Workspace Object and Bind
Use this option when you want to add an operator based on an object you previously
defined or imported into the workspace.

Editing Operators

5-6 Oracle Database 2 Day + Data Warehousing Guide

Either type the prefix to search for the object or select from the displayed list of objects
within the selected module.

To select multiple items, press the Control key as you click each item. To select a group
of items located in a series, click the first object in your selection range, press the Shift
key, and then click the last object.

You can add operators based on workspace objects within the same module as the
mapping or from other modules. If you select a workspace object from another
module, the Mapping Editor creates a connector if one does not already exist. The
connector establishes a path for moving data between the mapping location and the
location of the workspace object.

Editing Operators
Each operator has an editor associated with it. Use the operator editor to specify
general and structural information for operators, groups, and attributes. In the
operator editor you can add, remove, or rename groups and attributes. You can also
rename an operator.

Editing operators is different from assigning loading properties and conditional
behaviors. To specify loading properties and conditional behaviors, use the properties
windows as described in "Setting Operator, Group, and Attribute Properties" on
page 5-10.

To edit an operator, group, or attribute:
1. Select an operator from the Mapping Editor canvas or select any group or attribute

within an operator.

2. Right-click and select Open Details.

The Mapping Editor displays the operator editor with the Name Tab, Groups Tab,
and Input and Output Tabs for each type of group in the operator.

Some operators include additional tabs. For example, the Match Merge operator
includes tabs for defining Match rules and Merge rules.

3. Follow the prompts on each tab and click OK when you are finished.

Select Help if you need additional information for completing a tab.

Connecting Operators, Groups, and Attributes
After you select mapping source operators, operators that transform data, and target
operators, you are ready to connect them. Data flow connections graphically represent
how the data flows from a source, through operators, and to a target.

You can connect operators by one of the following methods:

■ Connecting Operators: Define criteria for connecting groups between two
operators.

■ Connecting Groups: Define criteria for connecting all the attributes between two
groups.

■ Connecting Attributes: Connect individual operator attributes to each other one
at a time.

■ Using an Operator Wizard: For operators such as the Pivot operator and
Name-Address operator, you can use the wizard to define data flow connections.

Connecting Operators, Groups, and Attributes

Defining ETL Logic 5-7

Connecting Operators
You can connect one operator to another if there are no existing connection between
the operators. Both of the operators that you want to connect must be displayed in
their icon form. You can also connect from a group to an operator. Hold down the
left-mouse button on the group, drag and then drop on the title of the operator.

To connect one operator to another:
1. Select the operator from which you want to establish a connection.

2. Click and hold down the left mouse button while the pointer is positioned over
the operator icon.

3. Drag the mouse away from the operator and toward the operator icon to which
you want to establish a connection.

4. Release the mouse button over the target operator.

The Mapping Connection dialog box is displayed.

5. In the Attribute Group to Connect section, select values for the following:

Source Group: Select the group, from the source operator, which must be
connected to the target operator.

Target Group: Select the group, from the target operator, to which the source
group must be mapped.

6. In the Connection Options section, select the method to be used to connect the
source attributes to the target attributes and click Preview.

7. Click OK to close the Mapping Connection Dialog box.

Connecting Groups
When you connect groups, the Mapping Editor assists you by either automatically
copying the attributes or displaying the Mapping Connection Dialog box.

To connect one group to another:
1. Select the group from which you want to establish a connection.

2. Click and hold down the left mouse button while the pointer is positioned over
the group.

3. Drag the mouse away from the group and towards the group to which you want
to establish a connection.

4. Release the mouse button over the target group.

If you connect from an operator group to a target group containing attributes, the
Mapping Connection Dialog Box is displayed.

5. In the Connection Options section, select the method used to connect the source
attributes to the target attributes and click Preview.

6. Click OK to close the Mapping Connection Dialog box.

If you connect from one operator group to a target group with no existing attributes,
the Mapping Editor automatically copies the attributes and connects the attributes.
This is useful for designing mappings such shown in "Example: Using the Mapping
Editor to Create Staging Area Tables".

Connecting Operators, Groups, and Attributes

5-8 Oracle Database 2 Day + Data Warehousing Guide

Example: Using the Mapping Editor to Create Staging Area Tables
You can use the Mapping Editor with an unbound table operator to quickly create
staging area tables.

The following instructions describe how to create a staging table based on an existing
source table. You can also use these instructions to create views, materialized views,
flat files, and transformations.

To map a source table to a staging table:
1. In the Mapping Editor, add a source table.

From the menu bar, select Mapping, select Add, then select Data Sources/Targets.
In the Data Sources/Targets menu, select Table Operator.

2. Use the Add Table Operator dialog box to select and bind the source table
operator in the mapping. From the Add Table Operator dialog box, select Create
unbound operator with no attributes.

The mapping should now resemble Figure 5–3 with one source table and one
staging area table without attributes.

Figure 5–3 Unbound Staging Table without Attributes and Source Table

3. With the mouse button positioned over the group in the source operator, click and
hold down the mouse button.

4. Drag the mouse to the staging area table group.

Warehouse Builder copies the source attributes to the staging area table and
connects the two operators.

5. In the Mapping Editor, select the unbound table you added to the mapping.
Right-click and select Create and Bind.

Warehouse Builder displays the dialog box shown in Figure 5–4.

Connecting Operators, Groups, and Attributes

Defining ETL Logic 5-9

Figure 5–4 Create and Bind Dialog Box

6. In Create in, specify the target module in which to create the table.

Warehouse Builder creates the new table in the target module you specify.

Connecting Attributes
You can draw a line from a single output attribute of one operator to a single input
attribute of another operator.

To connect attributes:
1. Click and hold down the mouse button while the pointer is positioned over an

output attribute.

2. Drag the mouse away from the output attribute and toward the input attribute to
which you want data to flow.

As you drag the mouse, a line appears on the Mapping Editor canvas to indicate a
connection.

3. Release the mouse over the input attribute.

4. Repeat steps 1 through 3 until you create all the required data flow connections.

Figure 5–5 displays a mapping with attributes connected.

Figure 5–5 Connected Operators in a Mapping

When connecting attributes, keep the following rules in mind:

Setting Operator, Group, and Attribute Properties

5-10 Oracle Database 2 Day + Data Warehousing Guide

■ You cannot connect to the same input attribute twice.

■ You cannot connect attributes within the same operator.

■ You cannot connect out of an input only attribute nor can you connect into an
output only attribute.

■ You cannot connect operators in such a way as to contradict an established
cardinality. Instead, use a Joiner operator.

Setting Operator, Group, and Attribute Properties
When you select an object on the canvas, the editor displays its associated properties
in the property inspector along the left side.

Figure 5–6 displays the property inspector for a Table operator.

Figure 5–6 Property Inspector for a Table Operator

You can view and set the following types of properties:

■ Operator properties: Properties that affect the entire operator. The properties you
can set depend upon the operator type.

■ Group properties: Properties that affect a group of attributes. Most operators do
not have properties for their groups. Examples of operators that do have group
properties include the splitter operator and the deduplicator.

■ Attribute properties: Properties that pertain to attributes in source and target
operators. Examples of attribute properties are data type, precision, and scale.

Synchronizing Operators and Workspace Objects
Many of the operators you use in a mapping have corresponding definitions in the
Warehouse Builder workspace. This is true of source and target operators such as table
and view operators. This is also true of other operators such as sequence and
transformation operators whose definitions you may want to use across multiple
mappings. As you make changes to these operators, you may want to propagate those
changes back to the workspace object.

You have the following choices in deciding the direction in which you propagate
changes:

Synchronizing Operators and Workspace Objects

Defining ETL Logic 5-11

Synchronizing from a Workspace Object to an Operator: After you begin using
mappings in a production environment, there may be changes to the sources or targets
that impact your ETL designs. Typically, the best way to manage these changes is
through the Warehouse Builder Dependency Manager described in the Warehouse
Builder Online Help. Use the Dependency Manager to automatically evaluate the
impact of changes and to synchronize all effected mappings at one time. Alternatively,
in the Mapping Editor, you can manually synchronize objects as described in
"Synchronizing from a Workspace Object to an Operator" on page 5-12.

Synchronizing from an Operator to a Workspace Object: When you make changes to
an operator in a mapping, you may want to propagate those changes to its
corresponding workspace definition. For example, the sources you imported and used
in a mapping may have complex physical names for its attributes.

Note that synchronizing is different from refreshing. The refresh command ensures
that you are up-to-date with changes made by other users in a multiuser environment.
Synchronizing matches operators with their corresponding workspace objects.

Synchronizing an Operator
To synchronize, select a single operator and synchronize it with the definition of a
specified workspace object.

To synchronize an operator:
1. Select an operator on the Mapping Editor canvas.

2. From the Edit menu, select Synchronize or right-click the header of the operator,
and select Synchronize.

The Synchronize Operator dialog box displays as shown in Figure 5–7.

Figure 5–7 Synchronizing an Operator

3. By default, Warehouse Builder selects the option for you to synchronize your
selected operator with its associated object in the workspace. You can accept the
default or select another workspace object from the list box.

In this step you also specify either Synchronizing from a Workspace Object to an
Operator or select the option for Synchronizing from an Operator to a Workspace
Object.

4. As an optional step, click Advanced to set the Matching Strategies.

Select Help for instruction on how to use the Matching Strategies.

5. Click OK.

Synchronizing Operators and Workspace Objects

5-12 Oracle Database 2 Day + Data Warehousing Guide

Synchronizing from a Workspace Object to an Operator
In the Mapping Editor, you can synchronize from a workspace object for any of the
following reasons:

■ Manually propagate changes: Propagate changes you made in a workspace object
to its associated operator. Changes to the workspace object can include structural
changes, attribute name changes, attribute data type changes. To automatically
propagate changes in a workspace object across multiple mappings, see in the
Warehouse Builder Online Help.

■ Synchronize an operator with a new workspace object: You can associate an
operator with a new workspace object if, for example, you migrate mappings from
one version of a data warehouse to a later version and maintain different object
definitions for each version.

Figure 5–8 shows an example of synchronizing a flat file operator with a new
workspace object.

Figure 5–8 Synchronizing from a Different Workspace Object

■ Prototype mappings using tables: When working in the design environment, you
could choose to design the ETL logic using tables. However, for production, you
may want to the mappings to source other workspace object types such as views,
materialized views, or cubes.

Synchronizing Operators Based on Workspace Objects
Table 5–1 lists operators and the types of workspace objects from which you can
synchronize.

Table 5–1 Operators Synchronized with Workspace Objects

To: Operator From: Workspace Object Type

Cube Tables, Views, Materialized Views, Flat Files, Dimensions and
Cubes

Dimension Tables, External Tables, Views, Materialized Views, Flat Files,
Dimensions and Cubes

External Table Tables, External Tables, Views, Materialized Views, Flat Files,
Dimensions and Cubes

Flat File Tables, External Tables, Views, Materialized Views, Flat Files,
Dimensions and Cubes

Key Lookup Tables only

Materialized View Tables, External Tables, Views, Materialized Views, Files,
Dimensions and Cubes

Synchronizing Operators and Workspace Objects

Defining ETL Logic 5-13

Note that when you synchronize from an external table operator, Warehouse Builder
updates the operator based on the workspace external table only and not its associated
flat file.

Synchronizing from an Operator to a Workspace Object
As you make changes to operators in a mapping, you may want to propagate those
changes back to a workspace object. By synchronizing, you can propagate changes
from the following operators: tables, views, materialized views, transformations, and
flat file operators.

Synchronize from the operator to a workspace object for any of the following reasons:

■ Propagate changes: Propagate changes you made in an operator to its associated
workspace object. When you rename the business name for an operator or
attribute, Warehouse Builder propagates the first 30 characters of the business
name as the bound name.

■ Replace workspace objects: Synchronize to replace an existing workspace object.

Synchronizing from an operator has no impact on the dependent relationship between
other operators and the workspace objects.

Post Mapping
Process

Transformations only

Pre Mapping
Process

Transformations only

Sequence Sequences only

Table Tables, External Tables, Views, Materialized Views, Flat Files,
Dimensions and Cubes

Transformation Transformations only

View Tables, External Tables, Views, Materialized Views, Files,
Dimensions and Cubes

Table 5–1 (Cont.) Operators Synchronized with Workspace Objects

To: Operator From: Workspace Object Type

Synchronizing Operators and Workspace Objects

5-14 Oracle Database 2 Day + Data Warehousing Guide

Deploying to Target Schemas and Executing ETL Logic 6-1

6
Deploying to Target Schemas and Executing

ETL Logic

This chapter contains the following topics:

■ About Deployment

■ Deploying Objects

■ Starting ETL Jobs

About Deployment
Deployment is the process of creating physical objects in a target location from the
logical objects in a Warehouse Builder repository.

Deploying a mapping or a process flow includes these steps:

■ Generate the PL/SQL, SQL*Loader, or ABAP script, if necessary.

■ Copy the script from the Design Center to the Control Center. Also copy
SQL*Loader control files to the Control Center.

■ Deploy any new connectors; that is, create the database links and database
directories between locations.

After deploying a mapping or a process flow, you must explicitly start the scripts.

You can deploy only those objects for which you have the COMPILE privilege. By
default, you have this privilege on all objects in the repository. However, the
repository owner may have instituted a different security policy.

You can deploy directly from the Design Center navigation tree or using the Control
Center Manager.

Note: Always maintain objects using Warehouse Builder. Do not
modify the deployed, physical objects manually in SQL. Otherwise,
the logical objects and the physical objects will not be synchronized,
which may cause unpredictable results.

Note: Whenever you deploy an object, Warehouse Builder
automatically saves all changes to all design objects to the repository.
You can choose to display a warning message by selecting Prompt for
commit on the Preferences dialog box.

About Deployment

6-2 Oracle Database 2 Day + Data Warehousing Guide

What is a Control Center?
A Control Center stores detailed information about every deployment, which you can
access either by object or by job, including:

■ The current deployment status of each object

■ A history of all deployment attempts for each object

■ A history of all ETL start attempts for each mapping and process flow

■ A complete log of messages from all deployment jobs

A Control Center is implemented as a schema in the same database as the target
location. Each repository has a default Control Center, which was created in the
schema of the repository owner. For example, the REP_OWNER repository owner has a
schema named REP_OWNER that stores the metadata from both the Design Center and
the default Control Center.

You can use the default Control Center to deploy to the local system, or you can create
additional Control Centers for deploying to different systems. Only one Control
Center is active at any time.

The Control Center Manager offers a comprehensive deployment console that enables
you to view and manage all aspects of deployment. It provides access to the
information stored in the active Control Center.

You can also access deployment data reports using the Repository Browser, as
described in the Warehouse Builder Online Help.

To create a new Control Center:
1. In the Locations Navigator, right-click Control Centers and select New Control

Center.

The Create Control Center dialog box is displayed.

2. Complete the dialog box. Click the Help button for additional details.

You can also create a Control Center using the Create Configuration wizard.

To make a Control Center active:
1. Create or edit a configuration so that it uses the Control Center.

2. Activate that configuration.

Configuring the Physical Details of Deployment
Warehouse Builder separates the logical design of the objects from the physical
details of the deployment. It creates this separation by storing the physical details in
configuration parameters. An object called a configuration stores all of the
configuration settings. You can create a different configuration for each deployment
location, with different settings for the object parameters in each one.

Before deployment, ensure that you check the configuration of the target objects, the
mappings, and the modules.

For an object to be deployable:

■ Its target location must be fully defined, valid, and selected for the object's
module.

■ Its Deployable parameter must be selected, which it is by default.

■ It must validate and generate without errors.

Deploying Objects

Deploying to Target Schemas and Executing ETL Logic 6-3

Deployment Actions
When you define a new object in the Design Center, the object is listed in the Control
Center Manager. Each object has a default deployment action, which you can display.
The default is set by the previous action and varies depending on the type of object.
You can override the default by choosing a different deployment action in the Control
Center Manager.

These are the deployment actions:

■ Create: Creates the object in the target location. If an object with that name already
exists, then an error may occur.

■ Upgrade: Modifies the object without losing data, if possible. You can undo and
redo an upgrade. This action is not available for some object types, such as
schedules.

■ Drop: Deletes the object from the target location.

■ Replace: Deletes and re-creates the object. This action is quicker than the Upgrade
action, but it deletes all data.

The Deployment Process
During the life cycle of a data system, you typically perform these steps in the
deployment process:

1. Select a configuration with the object settings and the Control Center that you
want to use.

2. Deploy objects to the target location. You can deploy them individually, in stages,
or all at once.

3. Review the results of the deployment. If an object fails to deploy, then fix the
problem and try again.

4. Start the ETL process.

5. Revise the design of target objects to accommodate user requests, changes to the
source data, and so forth.

6. Set the deployment action on the modified objects to Upgrade or Replace.

7. Repeat these steps.

Deploying Objects
Deployment is the process of creating physical objects in a target location from the
metadata using your generated code. You can deploy an object from the Projects
Navigator or using the Control Center Manager. Warehouse Builder automatically
validates and generates the object.

Deployment from the Projects Navigator is restricted to the default action, which may
be set to Create, Replace, Drop, or Update. To override the default action, use the
Control Center Manager, which provides full control over the deployment process.

To deploy from the Projects Navigator:
Select the object and click the Deploy icon on the toolbar.

Note: Warehouse Builder automatically saves all changes to the
repository before deployment.

Starting ETL Jobs

6-4 Oracle Database 2 Day + Data Warehousing Guide

Status messages appear at the bottom of the Design Center window. For notification
that deployment is complete, select Show Deployment Completion Messages in your
preferences before deploying.

To open the Control Center Manager:
1. Open a project.

2. From the Tools menu, select Control Center Manager.

Starting ETL Jobs
ETL is the process of extracting data from its source location, transforming it as
defined in a mapping, and loading it into target objects. When you start ETL, you
submit it as a job to the Warehouse Builder job queue. The job can start immediately or
at a scheduled time, if you use a scheduler such as the one in Oracle Enterprise
Manager. Similar to deployment, you can start ETL from the Projects Navigator or
using the Control Center Manager. You can also start ETL using tools outside of
Warehouse Builder that execute SQL scripts.

To start ETL from the Projects Navigator:
Select a mapping or a process flow, then, from the File menu, select Start.

Viewing the Data
After completing ETL, you can check any data object in Warehouse Builder to verify
that the results are as you expected.

To view the data:
In the Projects Navigator, right-click the object and select Data. The Data Viewer will
open with the contents of the object.

Part III
Reporting on a Data Warehouse

Part III discusses managing the data warehouse and includes:

■ Chapter 7, "SQL for Reporting and Analysis"

SQL for Reporting and Analysis 7-1

7
SQL for Reporting and Analysis

This chapter describes how to produce effective business reports derived from
business queries, and includes the following topics:

■ Use of SQL Analytic Capabilities to Answer Business Queries

■ Use of Partition Outer Join to Handle Sparse Data

■ Use of the WITH Clause to Simplify Business Queries

Use of SQL Analytic Capabilities to Answer Business Queries
Oracle Database has enhanced SQL's analytical processing capabilities by introducing
a family of aggregate and analytic SQL functions. These functions enable you to
calculate ranking, percentiles, and moving averages, and allow you to answer queries
such as the following:

■ What are the top 10 products sold by country?

■ What is the weekly moving average for products in stock?

■ What percentage of total sales occurs during the fourth quarter?

■ How much higher is the average discount in the fourth quarter than the discount
for the yearly average?

■ What would be the profitability ranking of existing oil refineries if 20 percent of
the refineries in a country were closed?

Aggregate functions are a fundamental part of data warehousing because they enable
you to derive different types of totals and then use these totals for additional
calculations. To improve aggregate performance in your data warehouse, Oracle
Database provides several extensions to the GROUP BY clause. The CUBE, ROLLUP,
GROUPING, and GROUPING SETS functions make querying and reporting easier and
faster. The ROLLUP function calculates aggregations such as SUM, COUNT, MAX, MIN,
and AVG at increasing levels of aggregation, from an individual detailed level to a
summary total. The CUBE function is an extension similar to ROLLUP, enabling a single
statement to calculate all possible combinations of aggregations.

Analytic functions compute an aggregate value based on a group of rows. These
functions differ from aggregate functions in that they return multiple rows for each
group. This group of rows is called a window. This window enables calculations such
as moving average or cumulative total. For each row, a window of rows is defined.
This window determines the range of rows used to perform the calculations for the
current row. Window sizes can be based on either a logical interval such as time or a
physical number of rows. Some functions are used only with windows and are often
referred to as window functions.

Use of SQL Analytic Capabilities to Answer Business Queries

7-2 Oracle Database 2 Day + Data Warehousing Guide

To enhance performance, aggregate and analytic functions can each perform in
parallel: multiple processes can simultaneously execute all of these functions. These
capabilities make calculations, analysis, and reporting easier and more efficient,
thereby enhancing data warehouse performance, scalability, and simplicity.

You can take advantage of the advanced SQL and PL/SQL capabilities Oracle
Database offers to convert business queries into SQL. This section describes these
advanced capabilities, and contains the following topics:

■ How to Add Totals to Reports Using the ROLLUP Function

■ How to Separate Totals at Different Levels Using the CUBE Function

■ How to Add Subtotals Using the GROUPING Function

■ How to Combine Aggregates Using the GROUPING SETS Function

■ How to Calculate Rankings Using the RANK Function

■ How to Calculate Relative Contributions to a Total

■ How to Perform Interrow Calculations with Window Functions

■ How to Calculate a Moving Average Using a Window Function

How to Add Totals to Reports Using the ROLLUP Function
The ROLLUP function enables a SELECT statement to calculate multiple levels of
subtotals across a specified group of dimensions and a grand total. The ROLLUP
function is a simple extension to the GROUP BY clause, so its syntax is easy to use. The
ROLLUP function is highly efficient, adding minimal overhead to a query.

The action of the ROLLUP function is straightforward: it creates subtotals that roll up
from the most detailed level to a grand total, following a grouping list specified in the
ROLLUP function. The ROLLUP function takes as its argument an ordered list of
grouping columns. First, it calculates the standard aggregate values specified in the
GROUP BY clause. Then, it creates progressively higher-level subtotals, moving from
right to left through the list of grouping columns. Finally, it creates a grand total.

When to Use the ROLLUP Function
When your tasks involve subtotals, particularly when the subtotals are along a
hierarchical dimension such as time or geography, use the ROLLUP function. A
ROLLUP function can also simplify and speed up the maintenance of materialized
views.

Example: Using the ROLLUP Function
A common request when preparing business reports is to find quarterly sales revenue
across different product categories, in order by the amount of revenue. The following
query achieves this and is used for the starting point for building more complicated
queries later.

To use the ROLLUP function:
SELECT t.calendar_quarter_desc quarter
, p.prod_category category
, TO_CHAR(SUM(s.amount_sold),'L999G999G990D00') revenue
FROM times t
, products p
, sales s
WHERE t.time_id = s.time_id

Use of SQL Analytic Capabilities to Answer Business Queries

SQL for Reporting and Analysis 7-3

AND p.prod_id = s.prod_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2001','dd-MON-yyyy')
AND TO_DATE('31-DEC-2001','dd-MON-yyyy')
GROUP BY t.calendar_quarter_desc, p.prod_category
ORDER BY t.calendar_quarter_desc
, SUM(s.amount_sold);

QUARTER CATEGORY REVENUE
------- ------------------------------ --------------
2001-01 Software/Other $860,819.81
2001-01 Electronics $1,239,287.71
2001-01 Hardware $1,301,343.45
2001-01 Photo $1,370,706.38
2001-01 Peripherals and Accessories $1,774,940.09
2001-02 Software/Other $872,157.38
2001-02 Electronics $1,144,187.90
2001-02 Hardware $1,557,059.59
2001-02 Photo $1,563,475.51
2001-02 Peripherals and Accessories $1,785,588.01
2001-03 Software/Other $877,630.85
2001-03 Electronics $1,017,536.82
2001-03 Photo $1,607,315.63
2001-03 Hardware $1,651,454.29
2001-03 Peripherals and Accessories $2,042,061.04
2001-04 Software/Other $943,296.36
2001-04 Hardware $1,174,512.68
2001-04 Electronics $1,303,838.52
2001-04 Photo $1,792,131.39
2001-04 Peripherals and Accessories $2,257,118.57

This query is useful, but you may want to see the totals for different categories in the
same report. The following example shows how you can use the ROLLUP function to
add the totals to the original query.

SELECT t.calendar_quarter_desc quarter
, p.prod_category category
, TO_CHAR(SUM(s.amount_sold),'L999G999G990D00') revenue
FROM times t
, products p
, sales s
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2001','dd-MON-yyyy')
AND TO_DATE('31-DEC-2001','dd-MON-yyyy')
GROUP BY ROLLUP(t.calendar_quarter_desc, p.prod_category)
ORDER BY t.calendar_quarter_desc
, SUM(s.amount_sold);

QUARTER CATEGORY REVENUE
------- ------------------------------ -------------
2001-01 Software/Other $860,819.81
2001-01 Electronics $1,239,287.71
2001-01 Hardware $1,301,343.45
2001-01 Photo $1,370,706.38
2001-01 Peripherals and Accessories $1,774,940.09
2001-01 $6,547,097.44
2001-02 Software/Other $872,157.38
2001-02 Electronics $1,144,187.90
2001-02 Hardware $1,557,059.59
2001-02 Photo $1,563,475.51

Use of SQL Analytic Capabilities to Answer Business Queries

7-4 Oracle Database 2 Day + Data Warehousing Guide

2001-02 Peripherals and Accessories $1,785,588.01
2001-02 $6,922,468.39
2001-03 Software/Other $877,630.85
2001-03 Electronics $1,017,536.82
2001-03 Photo $1,607,315.63
2001-03 Hardware $1,651,454.29
2001-03 Peripherals and Accessories $2,042,061.04
2001-03 $7,195,998.63
2001-04 Software/Other $943,296.36
2001-04 Hardware $1,174,512.68
2001-04 Electronics $1,303,838.52
2001-04 Photo $1,792,131.39
2001-04 Peripherals and Accessories $2,257,118.57
2001-04 $7,470,897.52
 $28,136,461.98

How to Separate Totals at Different Levels Using the CUBE Function
The CUBE function takes a specified set of grouping columns and creates subtotals for
all of the possible combinations. In terms of multidimensional analysis, the CUBE
function generates all the subtotals that can be calculated for a data cube with the
specified dimensions. If you have specified CUBE(time, region, department),
the result set will include all the values that would be included in an equivalent
ROLLUP function plus additional combinations.

When to Use the CUBE Function
Consider using the CUBE function in any situation requiring cross-tabular reports. The
data needed for cross-tabular reports can be generated with a single SELECT statement
using the CUBE function. Similar to ROLLUP, the CUBE function can be helpful in
generating materialized views. Note that population of materialized views is faster if
the query containing a CUBE function executes in parallel.

Example: Using the CUBE Function
You may want to get not only quarterly totals but also totals for the different product
categories for the selected period. The CUBE function enables this calculation, as
shown in the following example.

To use the CUBE function:
SELECT t.calendar_quarter_desc quarter
, p.prod_category category
, TO_CHAR(SUM(s.amount_sold),'L999G999G990D00') revenue
FROM times t
, products p
, sales s
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2001','dd-MON-yyyy')
AND TO_DATE('31-DEC-2001','dd-MON-yyyy')
GROUP BY CUBE(t.calendar_quarter_desc, p.prod_category)
ORDER BY t.calendar_quarter_desc
, SUM(s.amount_sold);

QUARTER CATEGORY REVENUE
------- ------------------------------ -------------
2001-01 Software/Other $860,819.81
2001-01 Electronics $1,239,287.71
2001-01 Hardware $1,301,343.45

Use of SQL Analytic Capabilities to Answer Business Queries

SQL for Reporting and Analysis 7-5

2001-01 Photo $1,370,706.38
2001-01 Peripherals and Accessories $1,774,940.09
2001-01 $6,547,097.44
2001-02 Software/Other $872,157.38
2001-02 Electronics $1,144,187.90
2001-02 Hardware $1,557,059.59
2001-02 Photo $1,563,475.51
2001-02 Peripherals and Accessories $1,785,588.01
2001-02 $6,922,468.39
2001-03 Software/Other $877,630.85
2001-03 Electronics $1,017,536.82
2001-03 Photo $1,607,315.63
2001-03 Hardware $1,651,454.29
2001-03 Peripherals and Accessories $2,042,061.04
2001-03 $7,195,998.63
2001-04 Software/Other $943,296.36
2001-04 Hardware $1,174,512.68
2001-04 Electronics $1,303,838.52
2001-04 Photo $1,792,131.39
2001-04 Peripherals and Accessories $2,257,118.57
2001-04 $7,470,897.52
 Software/Other $3,553,904.40
 Electronics $4,704,850.95
 Hardware $5,684,370.01
 Photo $6,333,628.91
 Peripherals and Accessories $7,859,707.71
 $28,136,461.98

How to Add Subtotals Using the GROUPING Function
Two challenges arise with the use of the ROLLUP and CUBE functions. How can you
programmatically determine which result set rows are subtotals, and how do you find
the exact level of aggregation for a given subtotal? You often need to use subtotals in
calculations such as percentage-of-totals, so you need a way to determine which rows
are the subtotals. What happens if query results contain both stored NULL values and
null values created by a ROLLUP or CUBE function? How can you differentiate between
the two?

The GROUPING function handles this problem. Using a single column as its argument,
the GROUPING function returns 1 when it encounters a null value created by a ROLLUP
or CUBE function. That is, if the null value indicates the row is a subtotal, the
GROUPING function returns a value of 1. Any other type of value, including a stored
NULL value, returns a value of 0.

When to Use the GROUPING Function
When you must handle NULL values or null values created by a ROLLUP or CUBE
operation, use the GROUPING function. One reason you may want to work with null
values is to put a description in null fields, for example, text describing that a number
represents a total.

Example: Using the GROUPING Function
You might want more descriptive columns in your report because it is not always clear
when a value represents a total. The GROUPING function enables you to insert labels
showing totals in the results of the query as shown in the following example.

To use the GROUPING function:
SELECT DECODE(GROUPING(t.calendar_quarter_desc)

Use of SQL Analytic Capabilities to Answer Business Queries

7-6 Oracle Database 2 Day + Data Warehousing Guide

 , 0, t.calendar_quarter_desc
 , 1, 'TOTAL'
) quarter
, DECODE(GROUPING(p.prod_category)
 , 0, p.prod_category
 , 1, 'TOTAL'
) category
, TO_CHAR(SUM(s.amount_sold),'L999G999G990D00') revenue
FROM times t
, products p
, sales s
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2001','dd-MON-yyyy')
AND TO_DATE('31-DEC-2001','dd-MON-yyyy')
GROUP BY CUBE(t.calendar_quarter_desc, p.prod_category)
ORDER BY t.calendar_quarter_desc
, SUM(s.amount_sold);

QUARTER CATEGORY REVENUE
------- ------------------------------ -------------
2001-01 Software/Other $860,819.81
2001-01 Electronics $1,239,287.71
2001-01 Hardware $1,301,343.45
2001-01 Photo $1,370,706.38
2001-01 Peripherals and Accessories $1,774,940.09
2001-01 TOTAL $6,547,097.44
2001-02 Software/Other $872,157.38
2001-02 Electronics $1,144,187.90
2001-02 Hardware $1,557,059.59
2001-02 Photo $1,563,475.51
2001-02 Peripherals and Accessories $1,785,588.01
2001-02 TOTAL $6,922,468.39
2001-03 Software/Other $877,630.85
2001-03 Electronics $1,017,536.82
2001-03 Photo $1,607,315.63
2001-03 Hardware $1,651,454.29
2001-03 Peripherals and Accessories $2,042,061.04
2001-03 TOTAL $7,195,998.63
2001-04 Software/Other $943,296.36
2001-04 Hardware $1,174,512.68
2001-04 Electronics $1,303,838.52
2001-04 Photo $1,792,131.39
2001-04 Peripherals and Accessories $2,257,118.57
2001-04 TOTAL $7,470,897.52
TOTAL Software/Other $3,553,904.40
TOTAL Electronics $4,704,850.95
TOTAL Hardware $5,684,370.01
TOTAL Photo $6,333,628.91
TOTAL Peripherals and Accessories $7,859,707.71
TOTAL TOTAL $28,136,461.98

How to Combine Aggregates Using the GROUPING SETS Function
You can selectively specify the set of groups that you want to create using the
GROUPING SETS function within a GROUP BY clause. This enables precise specification
across multiple dimensions without computing the whole data cube. In other words,
not all dimension totals are required.

Use of SQL Analytic Capabilities to Answer Business Queries

SQL for Reporting and Analysis 7-7

When to Use the GROUPING SETS Function
When you want particular subtotals in a data cube, but not all that are possible, use
the GROUPING SETS function.

Example: Using the GROUPING SETS Function
You may want to see the total sales numbers based on sales channel. Instead of adding
a separate query to retrieve the totals per channel class, you can use the GROUPING
SETS function as shown in the following example.

To use the GROUPING SETS function:
SELECT DECODE(GROUPING(t.calendar_quarter_desc)
 , 0, t.calendar_quarter_desc
 , 1, 'TOTAL'
) quarter
, DECODE(GROUPING(c.channel_class)
 , 0, c.channel_class
 , 1 , '--all--'
) channel
, DECODE(GROUPING(p.prod_category)
 , 0, p.prod_category
 , 1, 'TOTAL'
) category
, TO_CHAR(SUM(s.amount_sold),'L999G999G990D00') revenue
FROM times t
, products p
, channels c
, sales s
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
AND c.channel_id = s.channel_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2001','dd-MON-yyyy')
AND TO_DATE('31-DEC-2001','dd-MON-yyyy')
GROUP BY GROUPING SETS(c.channel_class,
 CUBE(t.calendar_quarter_desc, p.prod_category))
ORDER BY t.calendar_quarter_desc
, SUM(s.amount_sold);

QUARTER CHANNEL CATEGORY REVENUE
------- ------------- ---------------------------- -------------
2001-01 --all-- Software/Other $860,819.81
2001-01 --all-- Electronics $1,239,287.71
2001-01 --all-- Hardware $1,301,343.45
2001-01 --all-- Photo $1,370,706.38
2001-01 --all-- Peripherals and Accessories $1,774,940.09
2001-01 --all-- TOTAL $6,547,097.44
2001-02 --all-- Software/Other $872,157.38
2001-02 --all-- Electronics $1,144,187.90
2001-02 --all-- Hardware $1,557,059.59
2001-02 --all-- Photo $1,563,475.51
2001-02 --all-- Peripherals and Accessories $1,785,588.01
2001-02 --all-- TOTAL $6,922,468.39
2001-03 --all-- Software/Other $877,630.85
2001-03 --all-- Electronics $1,017,536.82
2001-03 --all-- Photo $1,607,315.63
2001-03 --all-- Hardware $1,651,454.29
2001-03 --all-- Peripherals and Accessories $2,042,061.04
2001-03 --all-- TOTAL $7,195,998.63
2001-04 --all-- Software/Other $943,296.36

Use of SQL Analytic Capabilities to Answer Business Queries

7-8 Oracle Database 2 Day + Data Warehousing Guide

2001-04 --all-- Hardware $1,174,512.68
2001-04 --all-- Electronics $1,303,838.52
2001-04 --all-- Photo $1,792,131.39
2001-04 --all-- Peripherals and Accessories $2,257,118.57
2001-04 --all-- TOTAL $7,470,897.52
TOTAL --all-- Software/Other $3,553,904.40
TOTAL --all-- Electronics $4,704,850.95
TOTAL --all-- Hardware $5,684,370.01
TOTAL --all-- Photo $6,333,628.91
TOTAL Indirect TOTAL $6,709,496.66
TOTAL --all-- Peripherals and Accessories $7,859,707.71
TOTAL Others TOTAL $8,038,529.96
TOTAL Direct TOTAL $13,388,435.36
TOTAL --all-- TOTAL $28,136,461.98

How to Calculate Rankings Using the RANK Function
Business information processing requires advanced calculations, including complex
ranking, subtotals, moving averages, and lead/lag comparisons. These aggregation
and analysis tasks are essential in creating business intelligence queries and are
accomplished by the use of window functions.

When to Use the RANK Function
When you want to perform complex queries and analyze the query results, use the
RANK function.

Example: Using the RANK Function
Users would like to see an additional column that shows the rank of any revenue
number within the quarter. The following example shows using the RANK function to
achieve this.

To use the RANK function:
SELECT DECODE(GROUPING(t.calendar_quarter_desc)
 , 0, t.calendar_quarter_desc
 , 1, 'TOTAL'
) quarter
, DECODE(GROUPING(t.calendar_quarter_desc) + GROUPING(p.prod_category)
 , 0, RANK() OVER (PARTITION BY t.calendar_quarter_desc
 ORDER BY SUM(s.amount_sold))
 , 1, null
) ranking
, DECODE(GROUPING(c.channel_class)
 , 0, c.channel_class
 , 1 , '--all--'
) channel
, DECODE(GROUPING(p.prod_category)
 , 0, p.prod_category
 , 1, 'TOTAL'
) category
, TO_CHAR(SUM(s.amount_sold),'L999G999G990D00') revenue
FROM times t
, products p
, channels c
, sales s
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
AND c.channel_id = s.channel_id

Use of SQL Analytic Capabilities to Answer Business Queries

SQL for Reporting and Analysis 7-9

AND s.time_id BETWEEN TO_DATE('01-JAN-2001','dd-MON-yyyy')
 AND TO_DATE('31-DEC-2001','dd-MON-yyyy')
GROUP BY GROUPING SETS(c.channel_class,
CUBE(t.calendar_quarter_desc, p.prod_category))
ORDER BY t.calendar_quarter_desc
, SUM(s.amount_sold);

QUARTER RANKING CHANNEL CATEGORY REVENUE
------- ------- -------- ---------------------------- --------------
2001-01 1 --all-- Software/Other $860,819.81
2001-01 2 --all-- Electronics $1,239,287.71
2001-01 3 --all-- Hardware $1,301,343.45
2001-01 4 --all-- Photo $1,370,706.38
2001-01 5 --all-- Peripherals and Accessories $1,774,940.09
2001-01 --all-- TOTAL $6,547,097.44
2001-02 1 --all-- Software/Other $872,157.38
2001-02 2 --all-- Electronics $1,144,187.90
2001-02 3 --all-- Hardware $1,557,059.59
2001-02 4 --all-- Photo $1,563,475.51
2001-02 5 --all-- Peripherals and Accessories $1,785,588.01
2001-02 --all-- TOTAL $6,922,468.39
2001-03 1 --all-- Software/Other $877,630.85
2001-03 2 --all-- Electronics $1,017,536.82
2001-03 3 --all-- Photo $1,607,315.63
2001-03 4 --all-- Hardware $1,651,454.29
2001-03 5 --all-- Peripherals and Accessories $2,042,061.04
2001-03 --all-- TOTAL $7,195,998.63
2001-04 1 --all-- Software/Other $943,296.36
2001-04 2 --all-- Hardware $1,174,512.68
2001-04 3 --all-- Electronics $1,303,838.52
2001-04 4 --all-- Photo $1,792,131.39
2001-04 5 --all-- Peripherals and Accessories $2,257,118.57
2001-04 --all-- TOTAL $7,470,897.52
TOTAL --all-- Software/Other $3,553,904.40
TOTAL --all-- Electronics $4,704,850.95
TOTAL --all-- Hardware $5,684,370.01
TOTAL --all-- Photo $6,333,628.91
TOTAL Indirect TOTAL $6,709,496.66
TOTAL --all-- Peripherals and Accessories $7,859,707.71
TOTAL Others TOTAL $8,038,529.96
TOTAL Direct TOTAL $13,388,435.36
TOTAL --all-- TOTAL $28,136,461.98

In this example, the PARTITION BY clause defines the boundaries for the RANK
function.

How to Calculate Relative Contributions to a Total
A common business intelligence request is to calculate the contribution of every
product category to the total revenue based on a given time period.

Example: Calculating Relative Contributions to a Total
You want to get the differences for revenue numbers on a quarter-by-quarter basis. As
shown in the following example, you can use a window function with a PARTITION
BY product category to achieve this.

To calculate relative contributions to a total:
SELECT DECODE(GROUPING(t.calendar_quarter_desc)

Use of SQL Analytic Capabilities to Answer Business Queries

7-10 Oracle Database 2 Day + Data Warehousing Guide

 , 0, t.calendar_quarter_desc
 , 1, 'TOTAL'
) quarter
, DECODE(GROUPING(t.calendar_quarter_desc) + GROUPING(p.prod_category)
 , 0, RANK() OVER (PARTITION BY t.calendar_quarter_desc
 ORDER BY SUM(s.amount_sold))
 , 1, null
) RANKING
, DECODE(GROUPING(c.channel_class)
 , 0, c.channel_class
 , 1 , '--all--'
) channel
, DECODE(GROUPING(p.prod_category)
 , 0, p.prod_category
 , 1, 'TOTAL'
) category
, TO_CHAR(SUM(s.amount_sold),'L999G999G990D00') revenue
, TO_CHAR(100 * RATIO_TO_REPORT(SUM(s.amount_sold))
OVER (PARTITION BY (TO_CHAR(GROUPING(p.prod_category) ||
 t.calendar_quarter_desc))),'990D0') percent
FROM times t
, products p
, channels c
, sales s
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
AND c.channel_id = s.channel_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2001','dd-MON-yyyy')
 AND TO_DATE('31-DEC-2001','dd-MON-yyyy')
GROUP BY GROUPING SETS(c.channel_class,
 CUBE(t.calendar_quarter_desc, p.prod_category))
ORDER BY t.calendar_quarter_desc
, SUM(s.amount_sold);

QUARTER RANKING CHANNEL CATEGORY REVENUE PERC
------- ------- ------- ------------- ------------ ----
2001-01 1 --all-- Software/Other $860,819.81 13.1
2001-01 2 --all-- Electronics $1,239,287.71 18.9
2001-01 3 --all-- Hardware $1,301,343.45 19.9
2001-01 4 --all-- Photo $1,370,706.38 20.9
2001-01 5 --all-- Peripherals $1,774,940.09 27.1
2001-01 --all-- TOTAL $6,547,097.44 100.0
2001-02 1 --all-- Software/Other $872,157.38 12.6
2001-02 2 --all-- Electronics $1,144,187.90 16.5
2001-02 3 --all-- Hardware $1,557,059.59 22.5
2001-02 4 --all-- Photo $1,563,475.51 22.6
2001-02 5 --all-- Peripherals $1,785,588.01 25.8
2001-02 --all-- TOTAL $6,922,468.39 100.0
2001-03 1 --all-- Software/Other $877,630.85 12.2
2001-03 2 --all-- Electronics $1,017,536.82 14.1
2001-03 3 --all-- Photo $1,607,315.63 22.3
2001-03 4 --all-- Hardware $1,651,454.29 22.9
2001-03 5 --all-- Peripherals $2,042,061.04 28.4
2001-03 --all-- TOTAL $7,195,998.63 100.0
2001-04 1 --all-- Software/Other $943,296.36 12.6
2001-04 2 --all-- Hardware $1,174,512.68 15.7
2001-04 3 --all-- Electronics $1,303,838.52 17.5
2001-04 4 --all-- Photo $1,792,131.39 24.0
2001-04 5 --all-- Peripherals $2,257,118.57 30.2
2001-04 --all-- TOTAL $7,470,897.52 100.0

Use of SQL Analytic Capabilities to Answer Business Queries

SQL for Reporting and Analysis 7-11

TOTAL --all-- Software/Other $3,553,904.40 12.6
TOTAL --all-- Electronics $4,704,850.95 16.7
TOTAL --all-- Hardware $5,684,370.01 20.2
TOTAL --all-- Photo $6,333,628.91 22.5
TOTAL Indirect TOTAL $6,709,496.66 11.9
TOTAL --all-- Peripherals $7,859,707.71 27.9
TOTAL Others TOTAL $8,038,529.96 14.3
TOTAL Direct TOTAL $13,388,435.36 23.8
TOTAL --all-- TOTAL $28,136,461.98 50.0

"Peripherals" was used instead of "Peripherals and Accessories" to save space.

How to Perform Interrow Calculations with Window Functions
A common business intelligence question is how a particular result relates to another
result. To do this in a single query, you can use window functions and perform
interrow calculations in a single statement.

Example: Performing Interrow Calculations
You may want to know the contribution of every product category to the total revenue
for each quarter. You can use the window function RATIO_TO_REPORT to achieve this
result, as shown in the following example. Note that you must use concatenation with
GROUPING(p.prod_category) to preclude the total from the RATIO_TO_REPORT
per quarter.

To perform interrow calculations:
SELECT DECODE(GROUPING(t.calendar_quarter_desc)
 , 0, t.calendar_quarter_desc
 , 1, 'TOTAL'
) quarter
, DECODE(GROUPING(t.calendar_quarter_desc) + GROUPING(p.prod_category)
 , 0, RANK() OVER (PARTITION BY t.calendar_quarter_desc
ORDER BY SUM(s.amount_sold))
 , 1, null
) RANKING
, DECODE(GROUPING(c.channel_class)
 , 0, c.channel_class
 , 1 , '--all--'
) channel
, DECODE(GROUPING(p.prod_category)
 , 0, p.prod_category
 , 1, 'TOTAL'
) category
, TO_CHAR(SUM(s.amount_sold),'L999G999G990D00') revenue
, TO_CHAR(100 * RATIO_TO_REPORT(SUM(s.amount_sold))
OVER (PARTITION BY (TO_CHAR(GROUPING(p.prod_category) ||
t.calendar_quarter_desc))),'990D0') percent
, DECODE(GROUPING(t.calendar_quarter_desc) + GROUPING(p.prod_category)
 , 0, TO_CHAR(SUM(s.amount_sold) - LAG(SUM(s.amount_sold),1)
 OVER (PARTITION BY p.prod_category
 ORDER BY t.calendar_quarter_desc),'L999G990D00')
 , 1, null
) q_q_diff
FROM times t
, products p
, channels c
, sales s
WHERE t.time_id = s.time_id

Use of SQL Analytic Capabilities to Answer Business Queries

7-12 Oracle Database 2 Day + Data Warehousing Guide

AND p.prod_id = s.prod_id
AND c.channel_id = s.channel_id
AND s.time_id BETWEEN TO_DATE('01-JAN-2001','dd-MON-yyyy')
 AND TO_DATE('31-DEC-2001','dd-MON-yyyy')
GROUP BY GROUPING SETS(c.channel_class,
 CUBE(t.calendar_quarter_desc, p.prod_category))
ORDER BY t.calendar_quarter_desc
, SUM(s.amount_sold);

QUARTER RANKING CHANNEL CATEGORY REVENUE PERC Q_Q_DIFF
------- ------- ------- ------------- ------------ ---- ----------
2001-01 1 --all-- Software/Other $860,819.81 13.1
2001-01 2 --all-- Electronics $1,239,287.71 18.9
2001-01 3 --all-- Hardware $1,301,343.45 19.9
2001-01 4 --all-- Photo $1,370,706.38 20.9
2001-01 5 --all-- Peripherals $1,774,940.09 27.1
2001-01 --all-- TOTAL $6,547,097.44 100.0
2001-02 1 --all-- Software/Other $872,157.38 12.6 $11,337.57
2001-02 2 --all-- Electronics $1,144,187.90 16.5 -$95,099.81
2001-02 3 --all-- Hardware $1,557,059.59 22.5 $255,716.14
2001-02 4 --all-- Photo $1,563,475.51 22.6 $192,769.13
2001-02 5 --all-- Peripherals $1,785,588.01 25.8 $10,647.92
2001-02 --all-- TOTAL $6,922,468.39 100.0
2001-03 1 --all-- Software/Other $877,630.85 12.2 $5,473.47
2001-03 2 --all-- Electronics $1,017,536.82 14.1 -$126,651.08
2001-03 3 --all-- Photo $1,607,315.63 22.3 $43,840.12
2001-03 4 --all-- Hardware $1,651,454.29 22.9 $94,394.70
2001-03 5 --all-- Peripherals $2,042,061.04 28.4 $256,473.03
2001-03 --all-- TOTAL $7,195,998.63 100.0
2001-04 1 --all-- Software/Other $943,296.36 12.6 $65,665.51
2001-04 2 --all-- Hardware $1,174,512.68 15.7 -$476,941.61
2001-04 3 --all-- Electronics $1,303,838.52 17.5 $286,301.70
2001-04 4 --all-- Photo $1,792,131.39 24.0 $184,815.76
2001-04 5 --all-- Peripherals $2,257,118.57 30.2 $215,057.53
2001-04 --all-- TOTAL $7,470,897.52 100.0
TOTAL --all-- Software/Other $3,553,904.40 12.6
TOTAL --all-- Electronics $4,704,850.95 16.7
TOTAL --all-- Hardware $5,684,370.01 20.2
TOTAL --all-- Photo $6,333,628.91 22.5
TOTAL Indirect TOTAL $6,709,496.66 11.9
TOTAL --all-- Peripherals $7,859,707.71 27.9
TOTAL Others TOTAL $8,038,529.96 14.3
TOTAL Direct TOTAL $13,388,435.36 23.8
TOTAL --all-- TOTAL $28,136,461.98 50.0

"Peripherals" was used instead of "Peripherals and Accessories" to save space.

How to Calculate a Moving Average Using a Window Function
You can create moving aggregations with window functions. A moving aggregation
can be based on a number of physical rows, or it can be a logical time period. Window
functions use the PARTITION keyword, and, for each row in a partition, you can
define a sliding window of data. This window determines the range of rows used to
perform the calculations for the current row. Window sizes can be based on either a
physical number of rows or a logical interval such as time. The window has a starting
row and an ending row. Depending on its definition, the window can move at one or
both ends. For instance, a window defined for a cumulative SUM function would have
its starting row fixed at the first row of its partition, and its ending row would slide
from the starting point to the last row of the partition. In contrast, a window defined

Use of Partition Outer Join to Handle Sparse Data

SQL for Reporting and Analysis 7-13

for a moving average would have both its starting and ending points slide so that they
maintain a constant physical or logical range.

Window functions are commonly used to calculate moving and cumulative versions of
SUM, AVERAGE, COUNT, MAX, MIN, and many more functions. They can be used only in
the SELECT and ORDER BY clauses of the query. Window functions include the
FIRST_VALUE function, which returns the first value in the window; and the LAST_
VALUE function, which returns the last value in the window. These functions provide
access to more than one row of a table without requiring a self-join.

Example: Calculating a Moving Average
The following example shows a query that retrieves a 7-day moving average of
product revenue per product, using a logical time interval.

To calculate a moving average:
SELECT time_id
, prod_name
, TO_CHAR(revenue,'L999G990D00') revenue
, TO_CHAR(AVG(revenue) OVER (PARTITION BY prod_name ORDER BY time_id
 RANGE INTERVAL '7' DAY PRECEDING),'L999G990D00') mv_7day_avg
FROM
(SELECT s.time_id, p.prod_name, SUM(s.amount_sold) revenue
 FROM products p
 , sales s
 WHERE p.prod_id = s.prod_id
 AND s.time_id BETWEEN TO_DATE('25-JUN-2001','dd-MON-yyyy')
 AND TO_DATE('16-JUL-2001','dd-MON-yyyy')
 AND p.prod_name LIKE '%Memory%'
 AND p.prod_category = 'Photo'
 GROUP BY s.time_id, p.prod_name
)
ORDER BY time_id, prod_name;

TIME_ID PROD_NAME REVENUE MV_7DAY_AVG
--------- ----------------- ------------------ --------------
26-JUN-01 256MB Memory Card $560.15 $560.15
30-JUN-01 256MB Memory Card $844.00 $702.08
02-JUL-01 128MB Memory Card $3,283.74 $3,283.74
02-JUL-01 256MB Memory Card $3,903.32 $1,769.16
03-JUL-01 256MB Memory Card $699.37 $1,501.71
08-JUL-01 128MB Memory Card $3,283.74 $3,283.74
08-JUL-01 256MB Memory Card $3,903.32 $2,835.34
10-JUL-01 256MB Memory Card $138.82 $1,580.50

Use of Partition Outer Join to Handle Sparse Data
Data is usually stored in sparse form. That is, if no value exists for a given combination
of dimension values, no row exists in the fact table (the table in a data warehouse that
contains the important facts, frequently sales). However, a reader of a business report
may want to view the data in dense form, with rows for all combinations of dimension
values displayed even when no fact table data exists for them. For example, if a
product did not sell during a particular time period, you may still want to see the
product for that time period with zero sales value next to it. Moreover, time series
calculations can be performed most easily when data is dense along the time
dimension. This is because dense data will fill a consistent number of rows for each
period, which makes it simple to use window functions with physical offsets.

Use of Partition Outer Join to Handle Sparse Data

7-14 Oracle Database 2 Day + Data Warehousing Guide

Data densification is the process of converting sparse data into dense form. To
overcome the problem of sparsity, you can use a partition outer join to fill the gaps in a
time series or any dimension. This type of join extends the conventional outer join
syntax by applying the outer join to each logical partition defined in a query. Oracle
Database logically partitions the rows in your query based on the expression you
specify in the PARTITION BY clause. The result of a partition outer join is a UNION
operation of the outer joins of each of the partitions in the logically partitioned table
with the table on the other side of the join. Note that you can use this type of join to fill
the gaps in any dimension, not just the time dimension.

When to Use Partition Outer Join
When you want to fill in missing rows in a result set or perform time series
calculations, use a partition outer join.

Example: Using Partition Outer Join
You may want to see how a particular product sold over the duration of a number of
weeks. In this example, memory cards from the Photo category are used. Because these
products are not sold frequently, there may be weeks that a product is not sold at all.
To make convenient comparisons, you must make the data dense using the partition
outer join as shown in the following example.

To use partition outer join:
SELECT tim.week_ending_day
, rev.prod_name product
, nvl(SUM(rev.amount_sold),0) revenue
FROM (SELECT p.prod_name, s.time_id, s.amount_sold
 FROM products p
 , sales s
 WHERE s.prod_id = p.prod_id
 AND p.prod_category = 'Photo'
 AND p.prod_name LIKE '%Memory%'
 AND s.time_id BETWEEN TO_DATE('25-JUN-2001','dd-MON-yyyy')
 AND TO_DATE('16-JUL-2001','dd-MON-yyyy')
) rev
 PARTITION BY (prod_name)
 RIGHT OUTER JOIN (SELECT time_id, week_ending_day FROM times
 WHERE week_ending_day
 BETWEEN TO_DATE('01-JUL-2001','dd-MON-yyyy')
 AND TO_DATE('16-JUL-2001','dd-MON-yyyy')
) tim
 ON (rev.time_id = tim.time_id)
GROUP BY tim.week_ending_day
, rev.prod_name
ORDER BY tim.week_ending_day
, rev.prod_name;

WEEK_ENDI PRODUCT REVENUE
--------- -- ----------
01-JUL-01 128MB Memory Card 0
01-JUL-01 256MB Memory Card 1404.15
08-JUL-01 128MB Memory Card 6567.48
08-JUL-01 256MB Memory Card 8506.01
15-JUL-01 128MB Memory Card 0
15-JUL-01 256MB Memory Card 138.82

Use of the WITH Clause to Simplify Business Queries

SQL for Reporting and Analysis 7-15

Use of the WITH Clause to Simplify Business Queries
Queries that make extensive use of window functions and different types of joins and
access many tables can become complex. The WITH clause enables you to eliminate
much of this complexity by incrementally building up the query. It lets you reuse the
same query block in a SELECT statement when it occurs more than once within a
complex query. Oracle Database retrieves the results of a query block and stores them
in the user's temporary tablespace.

When to Use the WITH Clause
When a query has multiple references to the same query block and there are joins and
aggregations, use the WITH clause.

Example: Using the WITH Clause
Assume you want to compare the sales of memory card products in the Photo category
for the first 3 week endings in July 2001. The following query takes into account that
some products may not have sold at all in that period, and it returns the increase or
decrease in revenue relative to the week before. Finally, the query retrieves the
percentage contribution of the memory card sales for that particular week. Due to the
use of the WITH clause, individual sections of the query are not complex.

To use the WITH clause:
WITH sales_numbers AS
(SELECT s.prod_id, s.amount_sold, t.week_ending_day
 FROM sales s
 , times t
 , products p
 WHERE s.time_id = t.time_id
 AND s.prod_id = p.prod_id
 AND p.prod_category = 'Photo'
 AND p.prod_name LIKE '%Memory%'
 AND t.week_ending_day BETWEEN TO_DATE('01-JUL-2001','dd-MON-yyyy')
 AND TO_DATE('16-JUL-2001','dd-MON-yyyy')
)
, product_revenue AS
(SELECT p.prod_name product, s.week_ending_day, SUM(s.amount_sold) revenue
 FROM products p
 LEFT OUTER JOIN (SELECT prod_id, amount_sold, week_ending_day
 FROM sales_numbers) s
 ON (s.prod_id = p.prod_id)
 WHERE p.prod_category = 'Photo'
 AND p.prod_name LIKE '%Memory%'
 GROUP BY p.prod_name, s.week_ending_day
)
, weeks AS
(SELECT distinct week_ending_day week FROM times WHERE week_ending_day
 BETWEEN TO_DATE('01-JUL-2001','dd-MON-yyyy')
 AND TO_DATE('16-JUL-2001','dd-MON-yyyy')
)
, complete_product_revenue AS
(SELECT w.week, pr.product, nvl(pr.revenue,0) revenue
 FROM product_revenue pr
 PARTITION BY (product)
 RIGHT OUTER JOIN weeks w
 ON (w.week = pr.week_ending_day)
)

Use of the WITH Clause to Simplify Business Queries

7-16 Oracle Database 2 Day + Data Warehousing Guide

SELECT week
, product
, TO_CHAR(revenue,'L999G990D00') revenue
, TO_CHAR(revenue - lag(revenue,1) OVER (PARTITION BY product
 ORDER BY week),'L999G990D00') w_w_diff
, TO_CHAR(100 * RATIO_TO_REPORT(revenue) OVER (PARTITION BY week),'990D0')
percentage
FROM complete_product_revenue
ORDER BY week, product;

WEEK PRODUCT REVENUE W_W_DIFF PERCENT
--------- ----------------- ------- -------- -------
01-JUL-01 128MB Memory Card $0.00 0.0
01-JUL-01 256MB Memory Card $1,404.15 100.0
01-JUL-01 64MB Memory Card $0.00 0.0
08-JUL-01 128MB Memory Card $6,567.48 $6,567.48 43.6
08-JUL-01 256MB Memory Card $8,506.01 $7,101.86 56.4
08-JUL-01 64MB Memory Card $0.00 $0.00 0.0
15-JUL-01 128MB Memory Card $0.00 -$6,567.48 0.0
15-JUL-01 256MB Memory Card $138.82 -$8,367.19 100.0
15-JUL-01 64MB Memory Card $0.00 $0.00 0.0

Part IV
Managing a Data Warehouse

Part IV discusses maintaining the data warehouse and includes:

■ Chapter 8, "Refreshing a Data Warehouse"

■ Chapter 9, "Optimizing Data Warehouse Operations"

■ Chapter 10, "Eliminating Performance Bottlenecks"

■ Chapter 11, "Backing up and Recovering a Data Warehouse"

■ Chapter 12, "Securing a Data Warehouse"

Refreshing a Data Warehouse 8-1

8
Refreshing a Data Warehouse

You must update your data warehouse on a regular basis to ensure that the
information derived from it is current. The process of updating the data is called the
refresh process, and this chapter describes the following topics:

■ About Refreshing Your Data Warehouse

■ Using Rolling Windows to Offload Data

About Refreshing Your Data Warehouse
Extraction, transformation and loading (ETL) is done on a schedule to reflect changes
made to the original source system. During this step, you physically insert the new,
updated data into the production data warehouse schema and take all the other steps
necessary (such as building indexes, validating constraints, making backup copies) to
make this new data available to the users. After this data has been loaded into the data
warehouse, the materialized views must be updated to reflect the latest data.

The partitioning scheme of the data warehouse is often crucial in determining the
efficiency of refresh operations in the data warehouse loading process. The loading
process is often considered when choosing the partitioning scheme of data warehouse
tables.

Most data warehouses are loaded with new data on a regular schedule. For example,
every night, week, or month, new data is brought into the data warehouse. The data
being loaded at the end of the week or month typically corresponds to the transactions
for the week or month. In this common scenario, the data warehouse is being loaded
by time. This suggests that the data warehouse tables be partitioned on a date column.
In the data warehouse example, suppose the new data is loaded into the sales table
every month. Furthermore, the sales table has been partitioned by month. These
steps show how the load process will proceed to add the data for a new month (Q1
2006) to the table sales.

Example: Refreshing Your Data Warehouse
Many queries request few columns from the products, customers, and sales
tables, restricting the query by date. A materialized view will speed up the majority of
the queries against the three tables. Use a prebuilt table on top of which the
materialized view will be created. Choose the partitioning strategy of the materialized
view in synchronization with the sales table's partitioning strategy.

The following example shows the refreshing of a materialized view. It uses a partition
exchange loading operation. The example is based on the sales table in the sh
schema.

About Refreshing Your Data Warehouse

8-2 Oracle Database 2 Day + Data Warehousing Guide

To refresh a materialized view:
1. Create a table that will be the basis for the materialized view.

CREATE TABLE sales_prod_cust_mv
(time_id DATE
, prod_id NUMBER
, prod_name VARCHAR2(50)
, cust_id NUMBER
, cust_first_name VARCHAR2(20)
, cust_last_name VARCHAR2(40)
, amount_sold NUMBER
, quantity_sold NUMBER
)
PARTITION BY RANGE (time_id)
(PARTITION p1999 VALUES LESS THAN (TO_DATE('01-JAN-2000','DD-MON-YYYY'))
, PARTITION p2000 VALUES LESS THAN (TO_DATE('01-JAN-2001','DD-MON-YYYY'))
, PARTITION p2001h1 VALUES LESS THAN (TO_DATE('01-JUL-2001','DD-MON-YYYY'))
, PARTITION p2001h2 VALUES LESS THAN (TO_DATE('01-JAN-2002','DD-MON-YYYY'))
, PARTITION p2001q1 VALUES LESS THAN (TO_DATE('01-APR-2002','DD-MON-YYYY'))
, PARTITION p2002q2 VALUES LESS THAN (TO_DATE('01-JUL-2002','DD-MON-YYYY'))
, PARTITION p2002q3 VALUES LESS THAN (TO_DATE('01-OCT-2002','DD-MON-YYYY'))
, PARTITION p2002q4 VALUES LESS THAN (TO_DATE('01-JAN-2003','DD-MON-YYYY'))
, PARTITION p2003q1 VALUES LESS THAN (TO_DATE('01-APR-2003','DD-MON-YYYY'))
, PARTITION p2003q2 VALUES LESS THAN (TO_DATE('01-JUL-2003','DD-MON-YYYY'))
, PARTITION p2003q3 VALUES LESS THAN (TO_DATE('01-OCT-2003','DD-MON-YYYY'))
, PARTITION p2003q4 VALUES LESS THAN (TO_DATE('01-JAN-2004','DD-MON-YYYY'))
, PARTITION p2004q1 VALUES LESS THAN (TO_DATE('01-APR-2004','DD-MON-YYYY'))
, PARTITION p2004q2 VALUES LESS THAN (TO_DATE('01-JUL-2004','DD-MON-YYYY'))
, PARTITION p2004q3 VALUES LESS THAN (TO_DATE('01-OCT-2004','DD-MON-YYYY'))
, PARTITION p2004q4 VALUES LESS THAN (TO_DATE('01-JAN-2005','DD-MON-YYYY'))
, PARTITION p2005q1 VALUES LESS THAN (TO_DATE('01-APR-2005','DD-MON-YYYY'))
, PARTITION p2005q2 VALUES LESS THAN (TO_DATE('01-JUL-2005','DD-MON-YYYY'))
, PARTITION p2005q3 VALUES LESS THAN (TO_DATE('01-OCT-2005','DD-MON-YYYY'))
, PARTITION p2005q4 VALUES LESS THAN (TO_DATE('01-JAN-2006','DD-MON-YYYY'))
, PARTITION p2006q1 VALUES LESS THAN (TO_DATE('01-APR-2006','DD-MON-YYYY'))
) PARALLEL COMPRESS;

2. Load the initial table from the sales table.

ALTER SESSION ENABLE PARALLEL DML;
INSERT /*+ PARALLEL smv */ INTO sales_prod_cust_mv smv
SELECT /*+ PARALLEL s PARALLEL c */ s.time_id
, s.prod_id
, p.prod_name
, s.cust_id
, cust_first_name
, c.cust_last_name
, SUM(s.amount_sold)
, SUM(s.quantity_sold)
FROM sales s
, products p
, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
GROUP BY s.time_id
, s.prod_id
, p.prod_name
, s.cust_id
, c.cust_first_name
, c.cust_last_name;
COMMIT;

About Refreshing Your Data Warehouse

Refreshing a Data Warehouse 8-3

3. Create a materialized view.

CREATE MATERIALIZED VIEW sales_prod_cust_mv
ON PREBUILT TABLE
ENABLE QUERY REWRITE
AS SELECT s.time_id
, s.prod_id
, p.prod_name
, s.cust_id
, c.cust_first_name
, c.cust_last_name
, SUM(s.amount_sold) amount_sold
, SUM(s.quantity_sold) quantity_sold
FROM sales s
, products p
, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
GROUP BY s.time_id
, s.prod_id
, p.prod_name
, s.cust_id
, c.cust_first_name
, c.cust_last_name;

4. Load a separate table to be exchanged with the new partition.

CREATE TABLE sales_q1_2006 PARALLEL COMPRESS
AS SELECT * FROM sales
WHERE 0 = 1;

/* This would be the regular ETL job */

ALTER SESSION ENABLE PARALLEL DML;

INSERT /* PARALLEL qs */ INTO sales_q1_2006 qs
SELECT /* PARALLEL s */ prod_id
, cust_id
, add_months(time_id,3)
, channel_id
, promo_id
, quantity_sold
, amount_sold
FROM sales PARTITION(sales_q4_2005) s;

COMMIT;

CREATE BITMAP INDEX bmp_indx_prod_id ON sales_q1_2006 (prod_id);
CREATE BITMAP INDEX bmp_indx_cust_id ON sales_q1_2006 (cust_id);
CREATE BITMAP INDEX bmp_indx_time_id ON sales_q1_2006 (time_id);
CREATE BITMAP INDEX bmp_indx_channel_id ON sales_q1_2006 (channel_id);
CREATE BITMAP INDEX bmp_indx_promo_id ON sales_q1_2006 (promo_id);

ALTER TABLE sales_q1_2006 ADD CONSTRAINT sales_q_prod_fk
FOREIGN KEY (prod_id) REFERENCES products(prod_id) ENABLE NOVALIDATE;

ALTER TABLE sales_q1_2006 ADD CONSTRAINT sales_q_cust_fk
FOREIGN KEY (cust_id) REFERENCES customers(cust_id) ENABLE NOVALIDATE;

ALTER TABLE sales_q1_2006 ADD CONSTRAINT sales_q_time_fk

About Refreshing Your Data Warehouse

8-4 Oracle Database 2 Day + Data Warehousing Guide

FOREIGN KEY (time_id) REFERENCES times(time_id) ENABLE NOVALIDATE;

ALTER table sales_q1_2006 ADD CONSTRAINT sales_q_channel_fk
FOREIGN KEY (channel_id) REFERENCES channels(channel_id) ENABLE NOVALIDATE;

ALTER table sales_q1_2006 ADD CONSTRAINT sales_q_promo_fk
FOREIGN KEY (promo_id) REFERENCES promotions(promo_id) ENABLE NOVALIDATE;

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('SH','SALES_Q1_2006');
END;
/

5. Create and load a separate table to be exchanged with a partition in the
materialized view.

CREATE TABLE sales_mv_q1_2006 PARALLEL COMPRESS
AS SELECT * FROM sales_prod_cust_mv
WHERE 1 = 0;

ALTER SESSION ENABLE PARALLEL DML;

INSERT /*+ PARALLEL smv */ INTO sales_mv_q1_2006 smv
SELECT /*+ PARALLEL s PARALLEL c */ s.time_id
, s.prod_id
, p.prod_name
, s.cust_id
, cust_first_name
, c.cust_last_name
, SUM(s.amount_sold)
, SUM(s.quantity_sold)
FROM sales_q1_2006 s
, products p
, customers c
WHERE s.cust_id = c.cust_id
AND s.prod_id = p.prod_id
GROUP BY s.time_id
, s.prod_id
, p.prod_name
, s.cust_id
, c.cust_first_name
, c.cust_last_name;

COMMIT;

6. Gather statistics.

BEGIN
 DBMS_STATS.GATHER_TABLE_STATS('SH','SALES_MV_Q1_2006');
END;

7. Exchange the partitions.

ALTER TABLE sales
EXCHANGE PARTITION sales_q1_2006
WITH TABLE sales_q1_2006
INCLUDING INDEXES WITHOUT VALIDATION;

ALTER TABLE sales_prod_cust_mv
EXCHANGE PARTITION p2006q1
WITH TABLE sales_mv_q1_2006

Using Rolling Windows to Offload Data

Refreshing a Data Warehouse 8-5

INCLUDING INDEXES WITHOUT VALIDATION;

8. Inform the database that the materialized view is fresh again.

ALTER MATERIALIZED VIEW sales_prod_cust_mv CONSIDER FRESH;

Note that because this scenario uses a prebuilt table and, because the constraints are
not RELY constraints, the query rewrite feature will work only with the query_
rewrite_integrity parameter set to STALE_TOLERATED.

Using Rolling Windows to Offload Data
A particularly effective way of removing and archiving your data is through the use of
a rolling window. An example of using a rolling window is when the data warehouse
stores the most recent 36 months of sales data. A new partition can be added to the
sales table for each new month, and an old partition can be removed from the sales
table. This way, you will always maintain 36 months of data in the warehouse.

Example: Using a Rolling Window
The following example shows a rolling window for the sales table in the sh schema.

To use a rolling window:
1. Add the sales for December 2005.

ALTER TABLE sales
ADD PARTITION sales_12_2005 VALUES LESS THAN ('01-JAN-2006');

Note that you must rebuild any existing indexes.

2. Drop the partition for 1999.

ALTER TABLE sales
DROP PARTITION sales_1999;

Using Rolling Windows to Offload Data

8-6 Oracle Database 2 Day + Data Warehousing Guide

Optimizing Data Warehouse Operations 9-1

9
Optimizing Data Warehouse Operations

This chapter describes how to optimize your data warehouse's performance and
contains the following topics:

■ Avoiding System Overload

■ Optimizing the Use of Indexes and Materialized Views

■ Optimizing Storage Requirements

Avoiding System Overload
This section describes how to identify and avoid system overload. In general, you
should use the automatic diagnostic feature Automatic Database Diagnostic Monitor
(ADDM) to identify performance problems with the database, as described in Oracle
Database 2 Day + Performance Tuning Guide. This section describes additional methods
for avoiding performance problems in your system and includes the following topics:

■ Monitoring System Performance

■ Using Database Resource Manager

Monitoring System Performance
This section provides information about how to avoid system overload by regularly
monitoring important metrics. You can monitor these metrics through the use of the
Database Performance page in Oracle Enterprise Manager. This section contains the
following topics:

■ Monitoring Parallel Execution Performance

■ Monitoring I/O

Monitoring Parallel Execution Performance
This section describes how to monitor parallel execution performance. Suppose that
you see many parallel statements are being downgraded. This may indicate a
performance problem. Statements that run with a degree of parallelism lower than
expected can take much longer, and users may experience different execution times
depending on whether or not statements were downgraded. Possible causes for
downgraded parallel statements include the following:

■ The initial degree of parallelism is higher than it should be and should be lowered.

■ There are not enough parallel servers available, which may indicate the system is
overloaded.

Avoiding System Overload

9-2 Oracle Database 2 Day + Data Warehousing Guide

To monitor parallel execution performance:
1. On the Database Home page, click Performance.

The Performance page is displayed.

2. Scroll down the page. Under the list of links, click PQ.

The PQ page is displayed. Parallel query performance characteristics are shown
for:

■ Parallel sessions

■ Parallel slaves

■ DML and DDL parallelization

■ Serialization and statement downgrades

Figure 9–1 Monitoring Parallel Execution

Monitoring I/O
This section describes how to monitor I/O performance. If the throughput on your
system is significantly lower than what you expect based on the system configuration
(see Chapter 2, "Setting Up Your Data Warehouse System") and your users complain
about performance issues, then there could be a performance problem. In a
well-configured system that runs a typical data warehouse workload, you expect a
large portion of large I/Os and a relatively low latency (lower than 30 ms) for a single
block I/O.

To monitor I/O performance:
1. On the Database Home page, click Performance.

The Performance page is displayed.

2. Scroll down the page. Under the list of links, click I/O.

The I/O page is displayed, displaying I/O Megabytes per Second by Function and
I/O Requests per Second by Function.

3. For details regarding read and write operations, select IO Type.

I/O details are shown for the following:

Avoiding System Overload

Optimizing Data Warehouse Operations 9-3

■ Large Writes

■ Large Reads

■ Small Writes

■ Small Reads

Figure 9–2 Monitoring I/O

Using Database Resource Manager
The Database Resource Manager provides the ability to prioritize work within the
Oracle system. Users with higher priority jobs get resources in order to minimize
response time for online work, for example, while users with lower priority jobs, such
as batch jobs or reports, might encounter slower response times. This priority
assignment enables more granular control over resources and provides features such
as automatic consumer group switching, maximum active sessions control, query
execution time estimations and undo pool quotas for consumer groups.

You can specify the maximum number of concurrently active sessions for each
consumer group. When this limit is reached, the Database Resource Manager queues
all subsequent requests and runs them only after existing active sessions complete.

The Database Resource Manager is part of Oracle Database and can distinguish
different processes inside the database. As a result, the Database Resource Manager
can assign priorities to individual operations running inside the database.

With the Database Resource Manager, you can do the following:

■ Guarantee certain users a minimum amount of processing resources regardless of
the load on the system and the number of users.

■ Distribute available processing resources by allocating percentages of CPU time to
different users and applications. In a data warehouse, a higher percentage may be
given to relational online analytical processing (ROLAP) applications than to batch
jobs.

Optimizing the Use of Indexes and Materialized Views

9-4 Oracle Database 2 Day + Data Warehousing Guide

■ Enable automatic switching of users from one group to another based on
administrator-defined criteria. If a member of a particular group of users creates a
session that runs for longer than a specified amount of time, that session can be
automatically switched to another group of users with different resource
requirements.

■ Configure an instance to use a particular method of allocating resources. You can
dynamically change the method, for example, from a daytime setup to a nighttime
setup, without having to shut down and restart the instance.

Optimizing the Use of Indexes and Materialized Views
You can improve the performance of your data warehouse using indexes and
materialized views. A key benefit of the SQL Access Advisor is its capability to use the
current workload as the basis for the recommendations.

Example: Optimizing Indexes and Materialized Views Using the SQL Access Advisor
For this example, assume you have a workload running on the system that may
benefit from certain indexes or materialized views.

To optimize an index and materialized view:
1. From the Advisor Central page, click SQL Advisors.

The Advisors page is displayed.

2. From the Advisors page, click SQL Access Advisor.

The SQL Access Advisor page is displayed.

3. Select Use Default Options and click Continue.

The Workload Source page is displayed.

4. Select Use an Existing SQL Tuning Set as your workload source. Go to a SQL
Tuning Set and click Select. Then, click Next.

The Recommendation Options page is displayed.

5. Select Indexes, Materialized Views, and Comprehensive Mode. Click Next.

The Schedule page is displayed.

6. Click Submit.

The Recommendations page is displayed.

7. Enter a name in the Name field and select Immediately for its start time. Then,
click Next.

The Review page is displayed.

8. Click Submit.

The Confirmation page is displayed.

9. Select your task name and click View Result.

The Results for Task page is displayed. It shows a possible improvement in costs.
You can view additional information under Recommendations, SQL Statements, or
Details.

Optimizing Storage Requirements

Optimizing Data Warehouse Operations 9-5

Figure 9–3 Suggested Improvements

Optimizing Storage Requirements
You can reduce your storage requirements by compressing data, which is achieved by
eliminating duplicate values in a database block. Database objects that can be
compressed include tables and materialized views. For partitioned tables, you can
compress some or all partitions. Compression attributes can be declared for a
tablespace, a table, or a partition of a table. If declared at the tablespace level, then all
tables created in that tablespace are compressed by default. You can alter the
compression attribute for a table (or a partition or tablespace), and the change applies
only to new data going into that table. As a result, a single table or partition may
contain some compressed blocks and some regular blocks. This guarantees that data
size will not increase as a result of compression. In cases where compression could
increase the size of a block, it is not applied to that block.

Using Data Compression to Improve Storage
You can compress several partitions or a complete partitioned heap-organized table.
You do this either by defining a complete partitioned table as being compressed, or by
defining it on a per-partition level. Partitions without a specific declaration inherit the
attribute from the table definition or, if nothing is specified on the table level, from the
tablespace definition.

The decision about whether or not a partition should be compressed is based on the
same rules as a nonpartitioned table. Because of the ability of range and composite
partitioning to separate data logically into distinct partitions, a partitioned table is an
ideal candidate for compressing parts of the data (partitions) that are mainly
read-only. It is, for example, beneficial in all rolling window operations as a kind of
intermediate stage before aging out old data. With data compression, you can keep
more old data online, minimizing the burden of additional storage use.

You can also change any existing uncompressed table partition later, add new
compressed and uncompressed partitions, or change the compression attribute as part
of any partition maintenance operation that requires data movement, such as MERGE
PARTITION, SPLIT PARTITION, or MOVE PARTITION. The partitions can contain
data, or they can be empty.

The access and maintenance of a partially or fully compressed partitioned table are the
same as for a fully uncompressed partitioned table. All rules that apply to fully
uncompressed partitioned tables are also valid for partially or fully compressed
partitioned tables.

Optimizing Storage Requirements

9-6 Oracle Database 2 Day + Data Warehousing Guide

To use data compression:
The following example creates a range-partitioned table with one compressed
partition costs_old. The compression attribute for the table and all other partitions
is inherited from the tablespace level.

CREATE TABLE costs_demo (
 prod_id NUMBER(6), time_id DATE,
 unit_cost NUMBER(10,2), unit_price NUMBER(10,2))
PARTITION BY RANGE (time_id)
 (PARTITION costs_old
 VALUES LESS THAN (TO_DATE('01-JAN-2003', 'DD-MON-YYYY')) COMPRESS,
 PARTITION costs_q1_2003
 VALUES LESS THAN (TO_DATE('01-APR-2003', 'DD-MON-YYYY')),
 PARTITION costs_q2_2003
 VALUES LESS THAN (TO_DATE('01-JUN-2003', 'DD-MON-YYYY')),
 PARTITION costs_recent VALUES LESS THAN (MAXVALUE));

Eliminating Performance Bottlenecks 10-1

10
Eliminating Performance Bottlenecks

This chapter describes how to identify and reduce performance issues and contains the
following topics:

■ Verifying That SQL Runs Efficiently

■ Improving Performance by Minimizing Resource Use

■ Using Resources Optimally

Verifying That SQL Runs Efficiently
An important aspect of ensuring that your system performs well is to eliminate
performance problems. This section describes some methods of finding and
eliminating these bottlenecks, and contains the following topics:

■ Analyzing Optimizer Statistics

■ Analyzing an Execution Plan

■ Using Hints to Improve Data Warehouse Performance

■ Using Advisors to Verify SQL Performance

Analyzing Optimizer Statistics
Optimizer statistics are a collection of data that describes more details about the
database and the objects in the database. These statistics are stored in the data
dictionary and are used by the query optimizer to choose the best execution plan for
each SQL statement. Optimizer statistics include the following:

■ Table statistics (number of rows, blocks, and the average row length)

■ Column statistics (number of distinct values in a column, number of null values in
a column, and data distribution)

■ Index statistics (number of leaf blocks, levels, and clustering factor)

■ System statistics (CPU and I/O performance and utilization)

The optimizer statistics are stored in the data dictionary. They can be viewed using
data dictionary views similar to the following:

SELECT * FROM DBA_TAB_STATISTICS;

Because the objects in a database can constantly change, statistics must be regularly
updated so that they accurately describe these database objects. Statistics are
maintained automatically by Oracle Database, or you can maintain the optimizer
statistics manually using the DBMS_STATS package.

Verifying That SQL Runs Efficiently

10-2 Oracle Database 2 Day + Data Warehousing Guide

Analyzing an Execution Plan
To execute a SQL statement, Oracle Database may perform many steps. Each of these
steps either retrieves rows of data physically from the database or prepares them in
some way for the user issuing the statement. The combination of the steps Oracle
Database uses to execute a statement is called an execution plan. An execution plan
includes an access path for each table that the statement accesses and an ordering of
the tables (the join order) with the appropriate join method.

You can examine the execution plan chosen by the optimizer for a SQL statement by
using the EXPLAIN PLAN statement. When the statement is issued, the optimizer
chooses an execution plan and then inserts data describing the plan into a database
table. Issue the EXPLAIN PLAN statement and then query the output table.

General guidelines for using the EXPLAIN PLAN statement are:

■ To use the SQL script UTLXPLAN.SQL to create a sample output table called
PLAN_TABLE in your schema.

■ To include the EXPLAIN PLAN FOR clause before the SQL statement.

■ After issuing the EXPLAIN PLAN statement, to use one of the scripts or packages
provided by Oracle Database to display the most recent plan table output.

■ The execution order in EXPLAIN PLAN output begins with the line that is indented
farthest to the right. If two lines are indented equally, then the top line is usually
executed first.

Example: Analyzing Explain Plan Output
The following statement shows the output of two EXPLAIN PLAN statements, one with
dynamic pruning and one with static pruning.

To analyze EXPLAIN PLAN output:
EXPLAIN PLAN FOR
SELECT p.prod_name
, c.channel_desc
, SUM(s.amount_sold) revenue
FROM products p
, channels c
, sales s
WHERE s.prod_id = p.prod_id
AND s.channel_id = c.channel_id
AND s.time_id BETWEEN '01-12-2001' AND '31-12-2001'
GROUP BY p.prod_name
, c.channel_desc;
SELECT * FROM TABLE(DBMS_XPLAN.DISPLAY);

WITHOUT TO_DATE

| Id| Operation | Name |Rows|Bytes|Cost | Time |Pstart|Pstop|
 (%CPU)

0	SELECT STATEMENT		252	15876	305(1)	00:00:06		
1	HASH GROUP BY		252	15876	305(1)	00:00:06		
*2	FILTER							
*3	HASH JOIN		2255	138K	304(1)	00:00:06		
4	TABLE ACCESS FULL	PRODUCTS	72	2160	2(0)	00:00:01		
5	MERGE JOIN		2286	75438	302(1)	00:00:06		
6	TABLE ACCESS BY INDEX ROWID	CHANNELS	5	65	2(0)	00:00:01		
7	INDEX FULL SCAN	CHANNELS_PK	5		1(0)	00:00:01		

Verifying That SQL Runs Efficiently

Eliminating Performance Bottlenecks 10-3

*8	SORT JOIN		2286	45720	299(1)	00:00:06		
9	PARTITION RANGE ITERATOR		2286	45720	298(0)	00:00:06	KEY	KEY
10	TABLE ACCESS BY LOCAL INDEX ROWID	SALES	2286	45720	298(0)	00:00:06	KEY	KEY
11	BITMAP CONVERSION TO ROWIDS							
*12	BITMAP INDEX RANGE SCAN	SALES_TIME_BIX					KEY	KEY

Predicate Information (identified by operation id):

 2 - filter(TO_DATE('01-12-2001')<=TO_DATE('31-12-2001'))
 3 - access("S"."PROD_ID"="P"."PROD_ID")
 8 - access("S"."CHANNEL_ID"="C"."CHANNEL_ID")
 filter("S"."CHANNEL_ID"="C"."CHANNEL_ID")
 12 - access("S"."TIME_ID">='01-12-2001' AND "S"."TIME_ID"<='31-12-2001')
Note the values of KEY KEY for Pstart and Pstop.

WITH TO_DATE
--
|Id| Operation | Name | Rows | Bytes |Cost(%CPU)| Time | Pstart| Pstop |
--
0	SELECT STATEMENT		252	15876	31 (20)	00:00:01		
1	HASH GROUP BY		252	15876	31 (20)	00:00:01		
*2	HASH JOIN		21717	1336K	28 (11)	00:00:01		
3	TABLE ACCESS FULL	PRODUCTS	72	2160	2 (0)	00:00:01		
*4	HASH JOIN		21717	699K	26 (12)	00:00:01		
5	TABLE ACCESS FULL	CHANNELS	5	65	3 (0)	00:00:01		
6	PARTITION RANGE SINGLE		21717	424K	22 (10)	00:00:01	20	20
*7	TABLE ACCESS FULL	SALES	21717	424K	22 (10)	00:00:01	20	20

Predicate Information (identified by operation id):

 2 - access("S"."PROD_ID"="P"."PROD_ID")
 4 - access("S"."CHANNEL_ID"="C"."CHANNEL_ID")
 7 - filter("S"."TIME_ID">=TO_DATE('2001-12-01 00:00:00', 'yyyy-mm-dd hh24:mi:ss') AND
 "S"."TIME_ID"<=TO_DATE('2001-12-31 00:00:00', 'yyyy-mm-dd hh24:mi:ss'))
Note the values of 20 20 for Pstart and Pstop.

The first execution plan shows dynamic pruning using the KEY values for Pstart and
Pstop respectively. Dynamic pruning means that the database will have to determine
at execution time which partition or partitions to access. With static pruning, the
database knows at parse time which partition or partitions to access, which leads to
more efficient execution.

You can frequently improve the execution plan by using explicit date conversions.
Using explicit date conversions is a best practice for optimal partition pruning and
index usage.

Using Hints to Improve Data Warehouse Performance
Hints enable you to make decisions usually made by the optimizer. As an application
developer, you might have information about your data that the optimizer does not
know. Hints provide a mechanism to instruct the optimizer to choose a certain query
execution plan based on specific criteria.

For example, you might know that a certain index is more selective for certain queries.
Based on this information, you might be able to choose a more efficient execution plan

Verifying That SQL Runs Efficiently

10-4 Oracle Database 2 Day + Data Warehousing Guide

than the optimizer. In this case, use hints to instruct the optimizer to use the optimal
execution plan.

By default, Oracle Warehouse Builder includes hints to optimize a typical data load.

Example: Using Hints to Improve Data Warehouse Performance
Suppose you want to quickly run a summary across the sales table for last year while
the system is otherwise idle. In this case, you could issue the following statement.

To use a hint to improve data warehouse performance:
SELECT /*+ PARALLEL(s,16) */ SUM(amount_sold)
FROM sales s
WHERE s.time_id BETWEEN TO_DATE('01-JAN-2005','DD-MON-YYYY')
 AND TO_DATE('31-DEC-2005','DD-MON-YYYY');

Another common use for hints in data warehouses is to ensure that records are
efficiently loaded using compression. For this, you use the APPEND hint, as shown in
the following SQL:

...
INSERT /* +APPEND */ INTO my_materialized_view
...

Using Advisors to Verify SQL Performance
Using the SQL Tuning Advisor and SQL Access Advisor, you can invoke the query
optimizer in advisory mode to examine a SQL statement or set of SQL statements, and
provide recommendations to improve their efficiency. The SQL Tuning Advisor and
SQL Access Advisor can make various types of recommendations, such as creating
SQL profiles, restructuring SQL statements, creating additional indexes or
materialized views, and refreshing optimizer statistics. Additionally, Oracle Enterprise
Manager enables you to accept and implement many of these recommendations in
very few steps.

The SQL Access Advisor is primarily responsible for making schema modification
recommendations, such as adding or dropping indexes and materialized views. It also
recommends a partitioning strategy. The SQL Tuning Advisor makes other types of
recommendations, such as creating SQL profiles and restructuring SQL statements. In
some cases where significant performance improvements can be gained by creating a
new index, the SQL Tuning Advisor may recommend doing so. However, these
recommendations must be verified by running the SQL Access Advisor with a SQL
workload that contains a set of representative SQL statements.

Example: Using the SQL Tuning Advisor to Verify SQL Performance
You can use the SQL Tuning Advisor to tune a single SQL statement or multiple SQL
statements. When tuning multiple SQL statements, remember the SQL Tuning
Advisor does not recognize interdependencies between the SQL statements. Instead, it
is just meant to be a convenient way for you to run the SQL Tuning Advisor for a large
number of SQL statements.

To run the SQL Tuning Advisor to verify SQL performance:

1. Go to the Advisor Central page, then click SQL Advisors.

The SQL Advisors page is displayed.

See Also: Oracle Warehouse Builder Sources and Targets Guide

Improving Performance by Minimizing Resource Use

Eliminating Performance Bottlenecks 10-5

2. Click Schedule SQL Tuning Advisor.

The Schedule SQL Tuning Advisor page is displayed. A suggested name will be in
the Name field, which you can modify. Then select Comprehensive to have a
comprehensive analysis performed. Select Immediately for the Schedule. Select a
appropriate SQL Tuning Set, and then click OK.

3. The Processing page is displayed. Then the Recommendations page shows the
recommendations for improving performance. Click View Recommendations.

The Recommendations page is displayed.

Figure 10–1 SQL Tuning Advisor: Recommendations

4. The recommendation is to create an index, which you can implement by clicking
Implement. You may also want to run the SQL Access Advisor.

Improving Performance by Minimizing Resource Use
You can minimize resource use, and improve your data warehouse's performance
through the use of the following capabilities:

■ Improving Performance: Partitioning

■ Improving Performance: Query Rewrite and Materialized Views

■ Improving Performance: Indexes

■ Improving Performance: Compression

Improving Performance: Partitioning
Data warehouses often contain large tables and require techniques both for managing
these large tables and for providing good query performance across these large tables.
This section describes partitioning, a key method for addressing these requirements.
Two capabilities relevant for query performance in a data warehouse are partition
pruning and partitionwise joins.

Improving Performance: Partition Pruning
Partition pruning is an essential performance feature for data warehouses. In partition
pruning, the optimizer analyzes FROM and WHERE clauses in SQL statements to
eliminate unneeded partitions when building the partition access list. This enables
Oracle Database to perform operations only on those partitions that are relevant to the
SQL statement. Oracle Database prunes partitions when you use range, LIKE,
equality, and IN-list predicates on the range or list partitioning columns, and when
you use equality and IN-list predicates on the hash partitioning columns.

Partition pruning dramatically reduces the amount of data retrieved from disk and
shortens the use of processing time, which improves query performance and resource

Improving Performance by Minimizing Resource Use

10-6 Oracle Database 2 Day + Data Warehousing Guide

use. If you partition the index and table on different columns (with a global
partitioned index), partition pruning eliminates index partitions even when the
partitions of the underlying table cannot be eliminated.

Depending upon the actual SQL statement, Oracle Database may use static or dynamic
pruning. Static pruning occurs at compile time; the information about the partitions is
accessed beforehand, dynamic pruning occurs at run time; the partitions are accessed
by a statement and are not known beforehand. A sample scenario for static pruning is
a SQL statement that contains a WHERE clause with a constant literal on the partition
key column. An example of dynamic pruning is the use of operators or functions in
the WHERE clause.

Partition pruning affects the statistics of the objects where pruning will occur and will
affect the execution plan of a statement.

Improving Performance: Partitionwise Joins
Partitionwise joins reduce query response time by minimizing the amount of data
exchanged among parallel execution servers when joins execute in parallel. This
significantly reduces response time and improves the use of both CPU and memory
resources. In Oracle Real Application Clusters environments, partitionwise joins also
avoid or at least limit the data traffic over the interconnection, which is the key to
achieving good scalability for massive join operations.

Partitionwise joins can be full or partial. Oracle Database decides which type of join to
use.

Example: Evaluating Partitioning with the SQL Access Advisor
You should always consider partitioning in data warehousing environments.

To evaluate partitioning:

1. In the Advisor Central page, click SQL Advisors.

The SQL Advisors page is displayed.

2. Click SQL Access Advisor.

The SQL Access Advisor page is displayed.

3. From the Initial Options menu, select Use Default Options and click Continue.

4. From the Workload Sources, select Current and Recent SQL Activity and click
Next.

The Recommendation Options page is displayed.

5. Select Partitioning and then Comprehensive Mode, then click Next.

The Schedule page is displayed.

6. Enter SQLACCESStest1 into the Task Name field and click Next.

The Review page is displayed. Click Submit.

Improving Performance by Minimizing Resource Use

Eliminating Performance Bottlenecks 10-7

Figure 10–2 Evaluating Partitioning

7. Click Submit.

The Confirmation page is displayed.

8. Select your task and click View Result. The Results for Task page is displayed,
showing possible improvements as a result of partitioning.

Figure 10–3 Partitioning Results

Improving Performance: Query Rewrite and Materialized Views
In data warehouses, you can use materialized views to compute and store aggregated
data such as the sum of sales. You can also use materialized views to compute joins
with or without aggregations, and they are very useful for frequently executed
expensive joins between large tables and expensive calculations. A materialized view
eliminates the overhead associated with expensive joins and aggregations for a large
or important class of queries because it computes and stores summarized data before
processing large joins or queries. Materialized views in these environments are often
referred to as summaries.

One of the major benefits of creating and maintaining materialized views is the ability
to use the query rewrite feature, which transforms a SQL statement expressed in terms
of tables or views into a statement accessing one or more materialized views that are
defined on the detail tables. The transformation is transparent to the user or
application, requiring no intervention and no reference to the materialized view in the
SQL statement. Because the query rewrite feature is transparent, materialized views
can be added or dropped just like indexes without invalidating the SQL in the
application code.

When underlying tables contain large amounts of data, it is a resource intensive and
time-consuming process to compute the required aggregates or to compute joins
between these tables. In these cases, queries can take minutes or even hours to return
the answer. Because materialized views contain already computed aggregates and

Improving Performance by Minimizing Resource Use

10-8 Oracle Database 2 Day + Data Warehousing Guide

joins, Oracle Database uses the powerful query rewrite process to quickly answer the
query using materialized views.

Improving Performance: Indexes
Bitmap indexes are widely used in data warehousing environments. The
environments typically have large amounts of data and ad hoc queries, but a low level
of concurrent DML transactions. Fully indexing a large table with a traditional B-tree
index can be prohibitively expensive in terms of disk space because the indexes can be
several times larger than the data in the table. Bitmap indexes are typically only a
fraction of the size of the indexed data in the table. For such applications, bitmap
indexing provides the following:

■ Reduced response time for large classes of ad hoc queries

■ Reduced storage requirements compared to other indexing techniques

■ Dramatic performance gains even on hardware with a relatively small number of
CPUs or a small amount of memory

■ Efficient maintenance during parallel DML and loads

Improving Performance: Compression
During bulk-load operations, Oracle Database can compress the data being loaded.
Oracle Database handles data transformation and compression internally and requires
no application changes to use compression. Compression can help improve
performance for queries that scan large amounts of data, by reducing the amount of
I/O required to scan that data.

No special installation is required to configure this feature. However, to use this
feature, the database compatibility parameter must be set to 11.2.0 or higher.

Improving Performance: DBMS_COMPRESSION Package
The PL/SQL package DBMS_COMPRESSION provides a compression advisor interface
to help choose the correct compression level for an application. The compression
advisor analyzes the objects in the database and estimates the possible compression
ratios that could be achieved.

Improving Performance: table_compress clause of CREATE TABLE and ALTER
TABLE
The table_compress clause of the CREATE TABLE and ALTER TABLE statements
provides COMPRESS, which takes a parameter for compression level. Use COMPRESS to
instruct the database whether to compress data segments to reduce disk use. All forms
of table compression are generally useful in OLAP environments and data
warehouses, where the number of insert and update operations is small; some forms
are also useful in OLTP environments.

Note: Hybrid Columnar Compression is a feature of certain Oracle
storage systems. See Oracle Database Concepts for more information.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for more
information regarding the DBMS_COMPRESSION package

Using Resources Optimally

Eliminating Performance Bottlenecks 10-9

Using Resources Optimally
You can maximize how resources are used in your system by ensuring that operations
run in parallel whenever possible. Database operations run faster if they are not
constrained by resources. The operation may be constrained by CPU resources, I/O
capacity, memory, or interconnection traffic (in a cluster). To improve the performance
of database operations, you focus on the performance problem and try to eliminate it
(so that the problem might shift to another resource). Oracle Database provides
functions to optimize the use of available resources and to avoid using unnecessary
resources.

Optimizing Performance with Parallel Execution
Parallel execution dramatically reduces response time for data-intensive operations on
large databases typically associated with a decision support system (DSS) and data
warehouses. You can also implement parallel execution on certain types of online
transaction processing (OLTP) and hybrid systems. Parallel execution is sometimes
called parallelism. Parallelism is breaking down a task so that, instead of one process
doing all the work in a query, many processes do part of the work at the same time.
An example of this is when four processes handle four different quarters in a year
instead of one process handling all four quarters by itself. The improvement in
performance can be quite high. Parallel execution improves processing for the
following:

■ Queries requiring large table scans, joins, or partitioned index scans

■ Creation of large indexes

■ Creation of large tables (including materialized views)

■ Bulk insert, update, merge, and delete operations

You can also use parallel execution to access object types within an Oracle database.
For example, you can use parallel execution to access large objects (LOBs).

Parallel execution benefits systems with all of the following characteristics:

■ Symmetric multiprocessors (SMPs), clusters, or massively parallel systems

■ Sufficient I/O bandwidth

■ Underutilized or intermittently used CPUs (for example, systems where CPU
usage is typically less than 30 percent)

■ Sufficient memory to support additional memory-intensive processes, such as
sorts, hashing, and I/O buffers

If your system lacks any of these characteristics, then parallel execution might not
significantly improve performance. In fact, parallel execution might reduce system
performance on overutilized systems or systems with small I/O bandwidth.

Note: For compression to be enabled on a table, it must be turned on
at table creation time, or the table must be changed to enable it.

See Also: Oracle Database SQL Language Reference

Using Resources Optimally

10-10 Oracle Database 2 Day + Data Warehousing Guide

How Parallel Execution Works
Parallel execution divides the task of running a SQL statement into multiple small
units, each of which is executed by a separate process. Also, the incoming data (tables,
indexes, partitions) can be divided into parts called granules. The user shadow
process takes on the role as parallel execution coordinator or query coordinator. The
query coordinator performs the following tasks:

■ Parses the query and determines the degree of parallelism

■ Allocates one or two sets of slaves (threads or processes)

■ Controls the query and sends instructions to the parallel query slaves

■ Determines which tables or indexes must be scanned by the parallel query slaves

■ Produces the final output to the user

Setting the Degree of Parallelism
The parallel execution coordinator may enlist two or more of the instance's parallel
execution servers to process a SQL statement. The number of parallel execution
servers associated with a single operation is known as the degree of parallelism or
DOP.

A single operation is a part of a SQL statement, such as an ORDER BY operation or a
full table scan to perform a join on a non-indexed column table.

The degree of parallelism is specified in the following ways:

■ At the statement level with PARALLEL hints

■ At the session level by issuing the ALTER SESSION FORCE PARALLEL statement

■ At the table level in the table's definition

■ At the index level in the index's definition

Example: Setting the Degree of Parallelism
Suppose that you want to set the DOP to 4 on a table.

To set the degree of parallelism:
Issue the following statement:

ALTER TABLE orders PARALLEL 4;

About Wait Events
Wait events are statistics that are incremented by a server process to indicate that the
server process had to wait for an event to complete before being able to continue
processing. A session could wait for a variety of reasons, including waiting for more
input, waiting for the operating system to complete a service such as a disk write
operation, or it could wait for a lock or latch.

When a session is waiting for resources, it is not doing any useful work. A large
number of wait events is a source of concern. Wait event data reveals various
symptoms of problems that might be affecting performance, such as latch contention,
buffer contention, and I/O contention.

Backing up and Recovering a Data Warehouse 11-1

11
Backing up and Recovering a Data

Warehouse

This chapter describes some considerations for data warehouse backup and recovery
and contains the following topics:

■ How Should I Handle Backup and Recovery for a Data Warehouse?

■ Strategies and Best Practices for Backup and Recovery

How Should I Handle Backup and Recovery for a Data Warehouse?
Backup and recovery are among the most important tasks for an administrator, and
data warehouses are no different. However, because of the sheer size of the database,
data warehouses introduce new challenges for an administrator in the backup and
recovery area.

Data warehouses are unique in that the data can come from myriad resources and it is
transformed before being inserted into the database, but mainly because a data
warehouse can be very large. Managing the recovery of a large data warehouse can be
a daunting task, and traditional OLTP backup and recovery strategies may not meet
the needs of a data warehouse.

Data warehouses differ from OLTP systems in the following ways:

■ Data warehouses are typically much larger.

■ A data warehouse may have different availability requirements than an
operational system. Even though business decisions do rely on information from
the data warehouse, a situation in which, for example, a service desk cannot
operate is much worse. Also, due to the size of data warehouses, there is a much
higher cost involved in guaranteeing the same level of availability for a data
warehouse.

■ Data warehouses are typically populated through more controlled processes,
usually referred to as Extraction, Transformation, and Loading (ETL). As a result,
updates in a data warehouse are better known and may be reproducible from data
sources.

■ A data warehouse typically stores a lot of historical data that is often not subject to
change. Data that does not change must be backed up only once.

You must plan a backup strategy as part of your system design and consider what to
back up and how frequently to back up. The most important variables in your backup
design are the amount of available resources to perform a backup or recovery and the
recovery time objective (the amount of time you can afford the system or part of the
system to be unavailable).

Strategies and Best Practices for Backup and Recovery

11-2 Oracle Database 2 Day + Data Warehousing Guide

NOLOGGING operations must be taken into account when planning a backup and
recovery strategy. Traditional recovery, restoring a backup and applying the changes
from the archive log, does not apply to NOLOGGING operations. Operations that rely
on the data that was manipulated by the NOLOGGING operation fail. The NOLOGGING
operations must be taken into account when designing a backup and recovery
strategy.

Never make a backup when a NOLOGGING operation is taking place.

Plan for one of the following or a combination of the following strategies:

■ ETL strategy

Recover a backup that does not contain non-recoverable transactions and replay
the ETL that has taken place between the backup and the failure.

■ Incremental backup strategy

Perform a backup immediately after an otherwise non-recoverable transaction has
taken place. Oracle provides a tracking file feature that enables incremental
backups based on changed data blocks. RMAN leverages the tracking file feature.

Strategies and Best Practices for Backup and Recovery
Devising a backup and recovery strategy can be a daunting task. When you have
hundreds of gigabytes of data that must be protected and recovered in the case of a
failure, the strategy can be very complex.

The following best practices can help you implement your warehouse's backup and
recovery strategy:

■ Best Practice A: Use ARCHIVELOG Mode

■ Best Practice B: Use RMAN

■ Best Practice C: Use Read-Only Tablespaces

■ Best Practice D: Plan for NOLOGGING Operations

■ Best Practice E: Not All Tablespaces Are Equally Important

Best Practice A: Use ARCHIVELOG Mode
Archived redo logs are crucial for recovery when no data can be lost because the redo
logs are a record of changes to the database. Oracle Database can be run in either of
two modes:

■ ARCHIVELOG -- Oracle Database archives the filled online redo log files before
reusing them in the cycle.

■ NOARCHIVELOG -- Oracle Database does not archive the filled online redo log files
before reusing them in the cycle.

Running the database in ARCHIVELOG mode has the following benefits:

■ The database can be completely recovered from both instance and media failure.

■ The user can perform backups while the database is open and available for use.

■ Oracle Database supports multiplexed archive logs to avoid any possible single
point of failure on the archive logs

■ The user has more recovery options, such as the ability to perform tablespace
point-in-time recovery (TSPITR).

Strategies and Best Practices for Backup and Recovery

Backing up and Recovering a Data Warehouse 11-3

■ Archived redo logs can be transmitted and applied to the physical standby
database, which is a replica of the primary database.

■ The database can be completely recovered from both instance and media failure.

Running the database in NOARCHIVELOG mode has the following consequences:

■ The user can only back up the database while it is completely closed after a clean
shutdown.

■ Typically, the only media recovery option is to restore the whole database, which
causes the loss of all transactions since the last backup.

Is Downtime Acceptable?
Oracle Database backups can be made while the database is open or closed. Planned
downtime of the database can be disruptive to operations, especially in global
enterprises that support users in multiple time zones, up to 24 hours per day. In these
cases, it is important to design a backup plan to minimize database interruptions.

Depending on your business, some enterprises can afford downtime. If your overall
business strategy requires little or no downtime, then your backup strategy must
implement an online backup. The database does not need to be taken down for a
backup. An online backup requires the database to be in ARCHIVELOG mode.

There is no reason not to use ARCHIVELOG mode. All data warehouses (and all
mission-critical databases) should use ARCHIVELOG mode. Given the size of a data
warehouse (and the amount of time it takes to back up a data warehouse), it is not
viable to make an offline backup of a data warehouse, which would be necessary if
NOARCHIVELOG mode was used.

Large scale data warehouses may have large amounts of data-modification that
generate large volumes of log files. To accommodate the management of many
archived log files, RMAN provides the option to compress log files as they are
archived. Archiving enables you to keep more archive logs on disk for faster
accessibility for recovery.

In summary, a best practice is to put the database in ARCHIVELOG mode to provide
online backups and point-in-time recovery options.

Best Practice B: Use RMAN
There are many reasons to adopt Recovery Manager (RMAN). Some of the reasons to
integrate RMAN into your backup and recovery strategy are that it offers:

■ Extensive reporting

■ Incremental backups

■ Downtime free backups

■ Backup and restore validation

■ Backup and restore optimization

■ Easily integrates with media managers

■ Block media recovery

■ Archive log validation and management

■ Corrupt block detection

Strategies and Best Practices for Backup and Recovery

11-4 Oracle Database 2 Day + Data Warehousing Guide

Best Practice C: Use Read-Only Tablespaces
One of the biggest issues facing a data warehouse is the size of a typical data
warehouse. Even with powerful backup hardware, backups may still take several
hours. Thus, one important consideration in improving backup performance is
minimizing the amount of data to be backed up. Read-only tablespaces are the
simplest mechanism to reduce the amount of data to be backed up in a data
warehouse.

The advantage of a read-only tablespace is that the data is backed up once. If a data
warehouse contains 5 years of historical data, then the first 4 years of data can be made
read-only. Theoretically, the regular backup of the database would only back up 20
percent of the data. This can dramatically reduce the amount of time required to back
up the data warehouse.

Most data warehouses store their data in tables that have been range-partitioned by
time. In a typical data warehouse, data is active for a period ranging anywhere from 30
days to 1 year. During this period, the historical data can still be updated and changed
(for example, a retailer may accept returns up to 30 days beyond the date of purchase,
so that sales data records could change during this period). However, when data has
reached a certain date, it is considered to be static.

By taking advantage of partitioning, users can make the static portions of their data
read-only. RMAN supports read-only tablespaces rather than read-only partitions or
tables. To take advantage of the read-only tablespaces and reduce the backup window,
a strategy of storing constant data partitions in a read-only tablespace should be
devised. Two strategies for implementing a rolling window are as follows:

■ Implement a regularly scheduled process to move partitions from a read/write
tablespace to a read-only tablespace when the data ages to the point where it is
considered static.

The best practice in this case is to put the database in ARCHIVELOG mode to
provide online backups and point-in-time recovery options.

■ Create a series of tablespaces, each containing a small number of partitions and
regularly modify one tablespace from read/write to read-only as the data in that
tablespace ages.

One consideration is that backing up data is only half of the recovery process. If
you configure a tape system so that it can backup the read/write portions of a data
warehouse in 4 hours, the corollary is that a tape system might take 20 hours to
recover the database if a complete recovery is necessary when 80 percent of the
database is read-only.

In summary, a best practice is to place static tables and partitions into read-only
tablespaces. A read-only tablespace is backed up once.

Best Practice D: Plan for NOLOGGING Operations
In general, one of the highest priorities for a data warehouse is performance. Not only
must the data warehouse provide good query performance for online users, but the
data warehouse must also be efficient during the ETL process so that large amount of
data can be loaded in the shortest amount of time.

One common optimization leveraged by data warehouses is to execute bulk-data
operations using the NOLOGGING mode. The database operations that support
NOLOGGING modes are direct-path loads and inserts, index creation, and table
creation. When an operation runs in NOLOGGING mode, data is not written to the redo
log (or more precisely, only a small set of metadata is written to the redo log). This

Strategies and Best Practices for Backup and Recovery

Backing up and Recovering a Data Warehouse 11-5

mode is widely used within data warehouses and can improve the performance of
bulk data operations by up to 50 percent.

However, the trade-off is that a NOLOGGING operation cannot be recovered using
conventional recovery mechanisms, because the necessary data to support the
recovery was never written to the log file. Moreover, subsequent operations to the data
upon which a NOLOGGING operation has occurred also cannot be recovered even if
those operations were not using NOLOGGING mode. Because of the performance gains
provided by NOLOGGING operations, it is generally recommended that data
warehouses utilize NOLOGGING mode in their ETL process.

The presence of NOLOGGING operations must be taken into account when devising the
backup and recovery strategy. When a database relies on NOLOGGING operations, the
conventional recovery strategy (of recovering from the latest tape backup and
applying the archived log files) is no longer applicable because the log files cannot
recover the NOLOGGING operation.

Never make a backup during a NOLOGGING operation. Oracle Database does not
currently enforce this rule: you must schedule the backup jobs and the ETL jobs so that
the NOLOGGING operations do not overlap with backup operations.

There are two approaches to backup and recovery in the presence of NOLOGGING
operations: ETL or incremental backups. If you are not using NOLOGGING operations
in your data warehouse, then you do not have to choose either of the following
options: You can recover your data warehouse using archived logs. However, the
following options may offer some performance benefits over an archive log-based
approach in the event of recovery.

■ Extraction, Transformation, and Loading

■ Incremental Backup

Extraction, Transformation, and Loading
The ETL process uses several Oracle Database features or tools and a combination of
methods to load (reload) data into a data warehouse. These features or tools may
consist of:

■ Transportable tablespaces. The Oracle transportable tablespace feature enables
users to quickly move a tablespace across Oracle databases. It is the most efficient
way to move bulk data between databases. Oracle Database provides the ability to
transport tablespaces across platforms. If the source platform and the target
platform are of different endianness, then RMAN will convert the tablespace being
transported to the target format.

■ SQL*Loader. SQL*Loader loads data from external flat files into tables of an Oracle
database. It has a powerful data parsing engine that puts little limitation on the
format of the data in the data file.

■ Data Pump (export/import). Oracle Database offers the Oracle Data Pump
technology, which enables high-speed movement of data and metadata from one
database to another. This technology is the basis for Oracle's data movement
utilities, Data Pump Export and Data Pump Import.

■ External tables. The external tables feature is a complement to existing
SQL*Loader functionality. It enables you to access data in external sources as if it
were in a table in the database.

The ETL Strategy and NOLOGGING Operations One approach is to take regular database
backups and store the necessary data files to re-create the ETL process for an entire
week. If a recovery is necessary, the data warehouse could be recovered from the most

Strategies and Best Practices for Backup and Recovery

11-6 Oracle Database 2 Day + Data Warehousing Guide

recent backup. Then, instead of rolling forward by applying the archived redo logs (as
would be done in a conventional recovery scenario), the data warehouse could be
rolled forward by re-running the ETL processes. If you this paradigm, you assume that
the ETL processes can be easily replayed, which would typically involve storing a set
of extraction files for each ETL process (many data warehouses do this already as a
best practice, in order to be able to identify repair a bad data feed for example).

A sample implementation of this approach is to make a backup of the data warehouse
every weekend, and then store the necessary files to support the ETL process for each
night. Thus, at most, 7 days of ETL processing would be re-applied in order to recover
a database. You can project the length of time to recover the data warehouse, based
upon the recovery speeds from tape and performance data from previous ETL runs.

Essentially, the data warehouse administrator is gaining better performance in the ETL
process through nologging operations, at a price of slight more complex and
less-automated recovery process. Many data warehouse administrators have found
that this is a desirable trade-off.

One downside to this approach is that the burden is upon the data warehouse
administrator to track all of the relevant changes that have occurred in the data
warehouse. This approach will not capture changes that fall outside of the ETL
process. For example, in some data warehouses, end-users may create their own tables
and data structures. Those changes will be lost in the event of a recovery. This
restriction must be conveyed to the end-users. Alternatively, you could also mandate
that users create all of private database objects in a separate tablespace, and during
recovery, the DBA could recover this tablespace using conventional recovery while
recovering the rest of the database by replaying the ETL process.

In summary, a best practice is to restore a backup that does not contain nonrecoverable
(NOLOGGING) transactions. Then replay the ETL process to reload the data.

Sizing the Block Change Tracking File The size of the block change tracking file is
proportional to:

■ The database size in bytes. The block change tracking file contains data that
represents data file blocks in the database. The data is approximately 1/250000 of
the total size of the database.

■ The number of enabled threads. All Oracle Real Application Cluster (Oracle RAC)
instances have access to the same block change tracking file. However, the
instances update different areas of the tracking file without any locking or
internode block swapping. You enable block change tracking for the entire
database and not for individual instances.

■ The changed block metadata. The block change tracking file keeps a record of all
changes between previous backups, in addition to the modifications since the last
backup. The tracking file retains the change history for a maximum of eight
backups. If the tracking file contains the change history for eight backups, then the
Oracle database overwrites the oldest change history information.

Let us take an example of a 500 GB database, with only one thread, and having eight
backups kept in the RMAN repository will require a block change tracking file of 20
MB.

((Threads * 2) + number of old backups) * (database size in bytes)
-- = 20MB
 250000

Strategies and Best Practices for Backup and Recovery

Backing up and Recovering a Data Warehouse 11-7

Incremental Backup
A more automated backup and recovery strategy in the presence of NOLOGGING
operations leverages RMAN's incremental backup capability Incremental backups
have been part of RMAN since it was first released. Incremental backups provide the
capability to backup only the changed blocks since the previous backup. Incremental
backups of data files capture data changes on a block-by-block basis, rather than
requiring the backup of all used blocks in a data file. The resulting backup sets are
generally smaller and more efficient than full datafile backups, unless every block in
the data file changed.

Oracle Database delivers the ability for faster incrementals with the implementation of
the change tracking file feature. When you enable block change tracking, Oracle
Database tracks the physical location of all database changes. RMAN automatically
uses the change tracking file to determine which blocks must be read during an
incremental backup and directly accesses that block to back it up.

The Incremental Approach A typical backup and recovery strategy using this approach is
to back up the data warehouse every weekend, and then take incremental backups of
the data warehouse every night following the completion of the ETL process. Note that
incremental backups, like conventional backups, must not be run concurrently with
nologging operations. To recover the data warehouse, the database backup is restored,
and then each night's incremental backups would be reapplied. Although the
NOLOGGING operations were not captured in the archive logs, the data from the
NOLOGGING operations is in the incremental backups. Moreover, unlike the previous
approach, this backup and recovery strategy can be completely managed using
RMAN.

The replay ETL approach and the incremental backup approach are both
recommended solutions to efficiently and safely back up and recover a database which
is a workload consisting of many NOLOGGING operations. The most important
consideration is that your backup and recovery strategy must take these NOLOGGING
operations into account.

In summary, a best practice is to implement the block change tracking feature and
make an incremental backup after a direct load that leaves objects unrecoverable due
to NOLOGGING operations.

Best Practice E: Not All Tablespaces Are Equally Important
While the simplest backup and recovery scenario is to treat every tablespace in the
database the same, Oracle Database provides the flexibility for you to devise a backup
and recovery scenario for each tablespace as needed.

Not all of the tablespaces in a data warehouse are equally significant from a backup
and recovery perspective. You can use this information to devise more efficient
backup and recovery strategies when necessary. The basic granularity of backup and
recovery is a tablespace, so different tablespaces can have different backup and
recovery strategies. On the most basic level, temporary tablespaces never need to be
backed up (a rule that RMAN enforces).

Moreover, in some data warehouses, there may be tablespaces that are not temporary
tablespaces but they are functioning as temporary tablespaces because they are
dedicated to scratch space for end-users to store temporary tables and incremental
results. Depending upon the business requirements, these tablespaces may not need to
backed up and restored. Instead, in the case of a loss of these tablespaces, the users
would re-create their own data objects.

Strategies and Best Practices for Backup and Recovery

11-8 Oracle Database 2 Day + Data Warehousing Guide

In many data warehouses, some data is more important than other data. For example,
the sales data in a data warehouse may be crucial, and, in a recovery situation, this
data must be online as soon as possible. In the same data warehouse, a table that stores
clickstream data from the corporate Web site may be much less critical. The business
may tolerate this data being offline for a few days or may be able to accommodate the
loss of several days of clickstream data in the event of a loss of database files. In this
scenario, the tablespaces that contains sales data must be backed up often, while the
tablespaces that contains clickstream data need only to be backed up once every week
or two.

Securing a Data Warehouse 12-1

12
Securing a Data Warehouse

This chapter describes considerations for data warehouse security and includes the
following topics:

■ Overview of Data Warehouse Security

■ Using Roles and Privileges for Data Warehouse Security

■ Using a Virtual Private Database in Data Warehouses

■ Overview of Oracle Label Security

■ Overview of Fine-Grained Auditing in Data Warehouses

■ Overview of Transparent Data Encryption in Data Warehouses

Overview of Data Warehouse Security
Data warehousing poses its own set of challenges for security. One major challenge is
that enterprise data warehouses are often very large systems, serving many user
communities with varying security needs. Thus, while data warehouses require a
flexible and powerful security infrastructure, the security capabilities must operate in
an environment that has stringent performance and scalability requirements.

Why Is Security Necessary for a Data Warehouse?
Many of the basic requirements for security are well-known and apply equally to a
data warehouse as they would to any other system. The applications must prevent
unauthorized users from accessing or modifying data; the applications and underlying
data must not be susceptible to data theft by hackers; the data must be available to the
right users at the right time; and the system must keep a record of activities performed
by its users.

These requirements are even more important in a data warehouse because a
warehouse contains data consolidated from multiple sources. From the perspective of
an individual trying to steal information, a data warehouse can be one of the most
lucrative targets in an enterprise. In addition, a robust security infrastructure can often
vastly improve the effectiveness or reduce the costs of a data warehouse environment.

Some typical customer scenarios for data warehouse security include the following:

■ An enterprise is managing a data warehouse that will be widely used by many
divisions and subsidiaries. This enterprise needs a security infrastructure that
ensures the employees of each division are able to view only the data that is
relevant to their own division, while also allowing employees in its corporate
offices to view data for all divisions and subsidiaries.

Using Roles and Privileges for Data Warehouse Security

12-2 Oracle Database 2 Day + Data Warehousing Guide

■ An enterprise's data warehouse stores personal information. Privacy laws may
govern the use of personal information. The data warehouse must handle data in a
way that adhere to these laws.

■ An enterprise sells data from a data warehouse to its clients. The clients can view
only the data they have purchased or they have subscribed. They must not be able
to see the data of other clients.

Using Roles and Privileges for Data Warehouse Security
System privileges, object privileges, and roles provide a basic level of database
security. The privileges and roles are designed to control user access to data and to
limit the kinds of SQL statements that users can execute. Roles are groupings of
privileges that you can use to create different levels of database access. For example,
you can create a role for application developers that enables users to create tables and
programs.

You can grant privileges and roles to other users only when you have the necessary
privilege. The granting of roles and privileges starts at the administrator level. At
database creation, the administrative user SYS is created and granted all system
privileges and predefined Oracle roles. User SYS can then grant privileges and roles to
other users and also grant those users the right to grant specific privileges to others.
Without explicitly granted privileges, a user cannot access any information in the
database.

Roles and privileges enforce security on the data itself, and their use is essential to a
data warehouse because users access data through a number of applications and tools.

Using a Virtual Private Database in Data Warehouses
Virtual private database (VPD) enables you to enforce security, to a fine level of
granularity, directly on tables, views, or synonyms. Because security policies are
attached directly to tables, views, or synonyms and are automatically applied
whenever a user accesses data, there is no way to bypass security. By dynamically
appending SQL statements with a predicate, VPD limits access to data at the row level
and applies a security policy to the database object itself. It enables multiple users to
have secure direct access to critical data within a single database server, with the
assurance of complete data separation. VPD can ensure that banking customers see
only their own account history and an enterprise serving multiple companies' data
(who may be competitors) can do so from the same data warehouse, and enables each
company to see only its own data. In addition to control at the row level, VPD offers
controlled access to security-relevant columns so that employees could see their own
salaries, but no one else's salaries.

VPD is application-transparent. Security is enforced at the database layer and takes
into account application-specific logic used to limit data access within the database.
Both standard and custom-built applications can take advantage of the fine-grained
access control, without changing a single line of application code.

Within an enterprise, VPD results in a lower cost of ownership in deploying
applications. Security can be built once, in the warehouse, rather than in every
application that accesses data. Security is stronger, because it is enforced by the
database, no matter how a user accesses the data. Security cannot be bypassed by a
user accessing data through an ad hoc query tool or new report writer. In an enterprise
data warehouse, which often supports dozens of different applications and many user
tools, the virtual private database feature is key technology.

Overview of Oracle Label Security

Securing a Data Warehouse 12-3

How a Virtual Private Database Works
A virtual private database is enabled by associating a security policy with a table,
view, or synonym. An administrator uses the PL/SQL DBMS_RLS package to bind a
policy function with a database object. Direct or indirect access to the object with an
attached security policy causes the database to consult a function implementing the
policy. The policy function returns a predicate (a WHERE clause) that the database
appends to the user's SQL statement, thus transparently and dynamically modifying
the user's data access.

An application context enables access conditions to be based on virtually any attribute
a database administrator deems significant, such as organization, subscriber number,
account number, or position. For example, a warehouse of sales data can enforce access
based on customer number, and whether the user is a customer, a sales representative
or a marketing analyst. In this way, customers can view their order history over the
Web (but only for their own orders), while sales representatives can view multiple
orders, but only for their own customers, and analysts can analyze all sales from the
previous two quarters.

An application context acts as a secure cache of data that can be applied to a
fine-grained access control policy on a particular object. Upon user login to the
database, Oracle Database sets up an application context to cache information in the
user's session. Information in the application context is defined by a developer based
on information relevant to the particular application. For example, a reporting
application that will query regional sales data can base its access control on the user's
position and division. The application, in this case, could initially set up an application
context for each user as he logs in and populate the context with data queried from the
employees and departments tables for the user's position and division, respectively.
The package implementing the VPD policy on the regional sales table references this
application context to populate the user's position and division for each query. As
such, an application context makes executing subqueries unnecessary, which might
otherwise hinder performance.

Overview of Oracle Label Security
Oracle Label Security, a security option for Oracle Database, extends the Virtual
Private Database (VPD) to enforce label-based access control. Oracle Label Security is a
complete, VPD-enabled application that augments VPD with labeled data
management. Oracle Label Security increases the ease of deploying secure data
warehouses and provides row-level security out-of-the-box.

Label-based access control lets you assign sensitivity labels to rows in a table, control
access to that data based on those labels, and ensure that data is marked with the
appropriate security label. For example, an organization may differentiate between
company confidential information and partner information. Furthermore, there may
be some confidential information that can be shared with certain key partners, and
some that is only accessible by certain subsets of internal groups, such as the finance or
sales divisions. The ability to manage labeled data is a great advantage for
organizations to provide information to the appropriate people, at the proper data
access level.

How Oracle Label Security Works
Oracle Label Security uses policies, which are collections of labels, user authorizations
and security enforcement options. After being created, policies can be applied to entire
application schemas or specific application tables. Oracle Label Security supports
multiple policy definitions within a single data warehouse. Label definitions, user

Overview of Fine-Grained Auditing in Data Warehouses

12-4 Oracle Database 2 Day + Data Warehousing Guide

authorizations and enforcement options are defined on a per-policy basis. For
example, a marketing policy might have labels such as marketing-only, manager, and
senior vice president.

Oracle Label Security mediates access to rows in database tables based on a label
contained in the row, a label associated with each database session, and Oracle Label
Security privileges assigned to the session. It provides access mediation on an
application table after a user has been granted the standard database system and
object privileges. For example, suppose a user has SELECT privilege on a table. If the
user executes a SELECT statement on the table, Oracle Label Security will evaluate the
selected rows and determine if the user can access them based on the privileges and
access labels assigned to the user. Oracle Label Security also performs such security
checks on UPDATE, DELETE, and INSERT statements. Labels can be applied to tables
as well as to materialized views, where the materialized views increase performance
and labels increase security, thus ensuring the flexibility, speed and scalability desired
in data warehouse environments.

How Data Warehouses Benefit from Labels
Oracle Label Security lets you consolidate information from multiple sources into one,
very large system, with the convenience and manageability and security of centralized
administration. Because this security option is an application on its own, there is no
need to do any PL/SQL programming. It enables consolidation, minimizes risk by
enforcing security on the data itself, and provides fine-grained access security by
controlling access to data down to the row level.

Overview of Fine-Grained Auditing in Data Warehouses
Fine-grained auditing enables the monitoring of data access based on content. It
enables you to specify the columns and conditions that you want audit records for.
Conditions can include limiting the audit to specific types of DML statements used in
connection with the columns that you specify. You can also provide the name of the
routine you want called when an audit event occurs. This routine can notify or alert
administrators or handle errors and anomalies. An example of fine-grained auditing
would be a central tax authority tracking access to tax returns to guard against
employee snooping. It is insufficient to know that a specific user issued a SELECT
statement on a particular table. What is necessary for robust security is auditing at the
finer level of when a user tries to access information that is not needed to perform his
normal duties, in this case, a SELECT statement on a column or row containing
non-work related information. Fine-grained auditing offers this capability.

Fine-grained auditing can be implemented in user applications using the DBMS_FGA
package or by using database triggers.

Overview of Transparent Data Encryption in Data Warehouses
Transparent data encryption enables encryption of sensitive data in database columns
as the data is stored in the operating system files. It provides for secure storage and
management of encryption keys in a security module external to the database. It
eliminates the need to embed encryption routines in existing applications and
dramatically lowers the cost and complexity of encryption. With a few simple
commands, sensitive application data can be encrypted.

Most encryption solutions require specific calls to encryption functions within the
application code. This is expensive because it typically requires extensive
understanding of an application as well as the ability to write and maintain software.

Overview of Transparent Data Encryption in Data Warehouses

Securing a Data Warehouse 12-5

In general, most organizations do not have the time or expertise to modify existing
applications to make calls to encryption routines. Transparent data encryption
addresses the encryption problem by deeply embedding encryption in Oracle
Database. Note, however, that it works with direct-path loading, but not with
SQL*Loader.

Application logic performed through SQL will continue to work without modification.
In other words, applications can use the same syntax to insert data into an application
table and Oracle Database will automatically encrypt the data before writing the
information to disk. Subsequent SELECT operations will have the data transparently
decrypted so the application will continue to work normally.

Overview of Transparent Data Encryption in Data Warehouses

12-6 Oracle Database 2 Day + Data Warehousing Guide

Index-1

Index

A
adding

mapping operators, 5-3
analytic capabilities, 7-1
analytic SQL, 7-1
ARCHIVELOG mode

as a best practice, 11-2
attribute properties, setting, 5-10
attributes

connecting, 5-9
level attributes, 4-5
setting properties, 5-10

auto binding rules, 4-9

B
backup, 11-1
backup and recovery, 11-1

best practices, 11-2
best practices

ARCHIVELOG mode, 11-2
backup and recovery, 11-2
NOLOGGING, 11-4
read-only tablespaces, 11-4
RMAN, 11-3
tablespace differences, 11-7

binding
auto binding, rules, 4-9

B-tree index, 10-8

C
calculating moving averages, 7-12
calculating relative contributions, 7-9
column statistics, 10-1
common tasks

in data warehouses, 1-3
COMPATIBLE parameter, 2-6
COMPRESS clause, 10-8
compression, 10-8
compression advisor interface, 10-8
connecting

attributes, 5-9
groups, 5-7
operators, 5-6

CPUs, 2-2
Create External Table Wizard, 4-3
creating

mappings, 5-1
CUBE function, 7-4
cubes, 4-11

dimensionality, 4-11
example, 4-12
measures, 4-11
relational implementation, 4-12

D
data compression, 9-5
data warehouses

common tasks, 1-3
key characteristics of, 1-2
setting up, 2-1, 2-5
tools, 1-4

data warehousing security, 12-1
DB_BLOCK_SIZE parameter, 2-6
DB_FILE_MULTIBLOCK_READ_COUNT

parameter, 2-7
DBMS_COMPRESSION package, 10-8
DBMS_STATS package, 10-1
dd utility, 2-4
defining

mappings, 5-1
degree of parallelism (DOP), 10-10
densification, 7-13
dimensions

dimension roles, 4-6
example, 4-7
hierarchies, 4-6
implementing, 4-8
level attributes, 4-5
level relationships, 4-6
star schema implementation, 4-8

disks
needed, 2-3

E
explain plan

analyzing, 10-2
EXPLAIN PLAN statement, 10-2

Index-2

explain plans, 10-2
external tables

creating a new definition, 4-3
defined, 4-3
wizard for creating, 4-3
See also flat files

F
fine-grained auditing

in data warehouses, 12-4
flat files

See also external tables

G
group properties, 5-10
GROUPING function, 7-5
GROUPING SETS function, 7-6
groups

connecting, 5-7
setting properties, 5-10

H
hardware configuration, 2-2

verifying, 2-4
hierarchies

about, 4-6
hints, 10-3

I
implementing

relational cubes, 4-12
star schema, 4-8

index statistics, 10-1
indexes

bitmap, 10-8
optimizing, 9-4
optimizing with SQL Access Advisor, 9-4

initialization parameters
setting, 2-6

interrow calculations
performing, 7-11

I/O, 2-3, 9-2
monitoring, 9-2

M
mapping operators

about, 5-1
adding, 5-3
connecting, 5-6
editing, 5-6
synchronizing with Repository objects, 5-10
types of, 5-3

mapping operators, setting, 5-10
mappings

about, 5-1
creating, 5-1

defining, 5-1
materialized views, 10-7
memory, 2-2
memory management

parameters, 2-5
memory needed, 2-2
MERGE PARTITION operation, 9-5
MOVE PARTITION operation, 9-5

N
NOLOGGING

as a best practice, 11-4

O
offloading data

with rolling windows, 8-5
operator attributes, 5-9
operator properties

setting, 5-10
operators

connecting, 5-6
editing, 5-6
synchronizing with Repository objects, 5-10

operators, mapping, 5-1
adding, 5-3
connecting, 5-6
editing, 5-6
types of, 5-3

optimizer statistics, 10-1
OPTIMIZER_FEATURES_ENABLE parameter, 2-6
Oracle Label Security, 12-3

in data warehouses, 12-2
Orion utility, 2-5

P
parallel execution, 10-9

how it works, 10-10
parallel query, 9-1, 10-9

monitoring, 9-1
PARALLEL_ADAPTIVE_MULTI_USER

parameter, 2-7
PARALLEL_MAX_SERVERS parameter, 2-7
parameter

COMPATIBLE, 2-6
DB_BLOCK_SIZE, 2-6
DB_FILE_MULTIBLOCK_READ_COUNT, 2-7
OPTIMIZER_FEATURES_ENABLED, 2-6
PARALLEL_ADAPTIVE_MULTI_USER, 2-7
PARALLEL_MAX_SERVERS, 2-7
QUERY_REWRITE_ENABLED, 2-7
QUERY_REWRITE_INTEGRITY, 2-7
STAR_TRANSFORMATION_ENABLED, 2-8

parameters
initialization, 2-6
memory management, 2-5

partition outer join, 7-13
partition pruning, 10-5
partitioning, 10-5

Index-3

partitionwise joins, 10-6
performance

improving with compression, 10-8
using hints, 10-3
using query rewrite, 10-7
using SQL Access Advisor, 10-4
using SQL Tuning Advisor, 10-4

privileges
in data warehouse security, 12-2

properties
setting, 5-10

Q
query rewrite, 2-6, 2-7, 4-4, 8-5, 10-7
QUERY_REWRITE_ENABLED parameter, 2-7
QUERY_REWRITE_INTEGRITY parameter, 2-7

R
range-partitioned table, 9-6
RANK function, 7-8
read-only tablespaces

as a best practice, 11-4
refreshing

data warehouse, 8-1
resource consumption, 10-5

minimizing, 10-5
Resource Manager, 9-3
resource use, 10-5
rewrite

query, 2-6, 2-7
RMAN

as a best practice, 11-3
roles

dimension roles, 4-6
in data warehouse security, 12-2

rolling windows, 8-5
ROLLUP function, 7-2

S
security

data warehouse, 12-1
sparsity, 7-13
SPLIT PARTITION operation, 9-5
SQL Access Advisor, 10-4

evaluating partitioning, 10-6
optimizing indexes, 9-4

SQL Tuning Advisor, 10-4
STAR_TRANSFORMATION_ENABLED

parameter, 2-8
statistics

optimizer, 10-1
storage

optimizing, 9-5
synchronizing

operators and Repository objects, 5-10
system statistics, 10-1

T
table statistics, 10-1
table_compress clause, 10-8
tables

See also external tables
tools

for data warehouses, 1-4
transparent data encryption

in data warehouses, 12-4

U
UTLXPLAN.SQL script, 10-2

V
virtual private database

how it works, 12-3
in data warehouses, 12-2

W
wait events, 10-10
WITH clause, 7-15
wizards

Create External Table Wizard, 4-3

Index-4

	Contents
	List of Tables
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Building Your Data Warehouse
	1 Introduction to Data Warehousing
	About This Guide
	Before Using This Guide
	What This Guide Is Not

	What Is a Data Warehouse?
	The Key Characteristics of a Data Warehouse
	Common Oracle Data Warehousing Tasks

	Tasks Illustrated in This Guide
	Tools for Administering the Data Warehouse

	2 Setting Up Your Data Warehouse System
	General Steps for Setting Up a Data Warehouse System
	Preparing the Environment
	Balanced Hardware Configuration
	How Many CPUs and What Clock Speed Do I Need?
	How Much Memory Do I Need?
	How Many Disks Do I Need?
	How Do I Determine Sufficient I/O Bandwidth?

	Verifying the Data Warehouse Hardware Configuration
	About the dd Utility
	Example: Using the dd Utility
	About the Orion Utility

	Setting Up a Database for a Data Warehouse
	How Should I Set the Memory Management Parameters?
	Example: Setting an Initialization Parameter
	What Other Initialization Parameter Settings Are Important?

	Accessing Oracle Warehouse Builder
	Installing the Oracle Warehouse Builder Demonstration

	3 Identifying Data Sources and Importing Metadata
	Overview of Data Sources
	General Steps for Importing Metadata from Sources
	About Workspaces, Projects, and Other Devices in Warehouse Builder
	Example: Importing Metadata from Flat Files
	Specifying Locations for the Flat Files
	Creating Modules in the Project
	Starting the Import Metadata Wizard
	Using the Flat File Sample Wizard
	Importing the Flat File Data

	4 Defining Warehouses in Oracle Warehouse Builder
	General Steps for Defining a Relational Target Warehouse
	Identifying the Warehouse Target Schema
	About Flat File Sources in Warehouse Builder
	Exercise: Adding External Tables to the Target Module

	About Dimensions
	Exercise: Understanding Dimensions
	About Levels
	Defining Level Attributes
	Defining Hierarchies
	Dimension Roles
	Level Relationships
	Dimension Example
	Control Rows

	Implementing a Dimension
	Star Schema
	Binding

	About Cubes
	Defining a Cube
	Cube Measures
	Cube Dimensionality
	Cube Example

	Implementing a Cube
	Relational Implementation of a Cube
	Binding

	Part II Loading Data into Your Data Warehouse
	5 Defining ETL Logic
	About Mappings and Operators
	Summary of Steps for Defining Mappings
	Creating a Mapping
	Types of Operators

	Adding Operators
	Adding Operators that Bind to Workspace Objects
	Create Unbound Operator with No Attributes
	Select from Existing Workspace Object and Bind

	Editing Operators
	Connecting Operators, Groups, and Attributes
	Connecting Operators
	Connecting Groups
	Example: Using the Mapping Editor to Create Staging Area Tables

	Connecting Attributes

	Setting Operator, Group, and Attribute Properties
	Synchronizing Operators and Workspace Objects
	Synchronizing an Operator
	Synchronizing from a Workspace Object to an Operator
	Synchronizing Operators Based on Workspace Objects

	Synchronizing from an Operator to a Workspace Object

	6 Deploying to Target Schemas and Executing ETL Logic
	About Deployment
	What is a Control Center?
	Configuring the Physical Details of Deployment
	Deployment Actions
	The Deployment Process

	Deploying Objects
	Starting ETL Jobs
	Viewing the Data

	Part III Reporting on a Data Warehouse
	7 SQL for Reporting and Analysis
	Use of SQL Analytic Capabilities to Answer Business Queries
	How to Add Totals to Reports Using the ROLLUP Function
	When to Use the ROLLUP Function
	Example: Using the ROLLUP Function

	How to Separate Totals at Different Levels Using the CUBE Function
	When to Use the CUBE Function
	Example: Using the CUBE Function

	How to Add Subtotals Using the GROUPING Function
	When to Use the GROUPING Function
	Example: Using the GROUPING Function

	How to Combine Aggregates Using the GROUPING SETS Function
	When to Use the GROUPING SETS Function
	Example: Using the GROUPING SETS Function

	How to Calculate Rankings Using the RANK Function
	When to Use the RANK Function
	Example: Using the RANK Function

	How to Calculate Relative Contributions to a Total
	Example: Calculating Relative Contributions to a Total

	How to Perform Interrow Calculations with Window Functions
	Example: Performing Interrow Calculations

	How to Calculate a Moving Average Using a Window Function
	Example: Calculating a Moving Average

	Use of Partition Outer Join to Handle Sparse Data
	When to Use Partition Outer Join
	Example: Using Partition Outer Join

	Use of the WITH Clause to Simplify Business Queries
	When to Use the WITH Clause
	Example: Using the WITH Clause

	Part IV Managing a Data Warehouse
	8 Refreshing a Data Warehouse
	About Refreshing Your Data Warehouse
	Example: Refreshing Your Data Warehouse

	Using Rolling Windows to Offload Data
	Example: Using a Rolling Window

	9 Optimizing Data Warehouse Operations
	Avoiding System Overload
	Monitoring System Performance
	Monitoring Parallel Execution Performance
	Monitoring I/O

	Using Database Resource Manager

	Optimizing the Use of Indexes and Materialized Views
	Example: Optimizing Indexes and Materialized Views Using the SQL Access Advisor

	Optimizing Storage Requirements
	Using Data Compression to Improve Storage

	10 Eliminating Performance Bottlenecks
	Verifying That SQL Runs Efficiently
	Analyzing Optimizer Statistics
	Analyzing an Execution Plan
	Example: Analyzing Explain Plan Output

	Using Hints to Improve Data Warehouse Performance
	Example: Using Hints to Improve Data Warehouse Performance

	Using Advisors to Verify SQL Performance

	Improving Performance by Minimizing Resource Use
	Improving Performance: Partitioning
	Improving Performance: Partition Pruning
	Improving Performance: Partitionwise Joins
	Example: Evaluating Partitioning with the SQL Access Advisor

	Improving Performance: Query Rewrite and Materialized Views
	Improving Performance: Indexes
	Improving Performance: Compression
	Improving Performance: DBMS_COMPRESSION Package
	Improving Performance: table_compress clause of CREATE TABLE and ALTER TABLE

	Using Resources Optimally
	Optimizing Performance with Parallel Execution
	How Parallel Execution Works
	Setting the Degree of Parallelism
	Example: Setting the Degree of Parallelism

	About Wait Events

	11 Backing up and Recovering a Data Warehouse
	How Should I Handle Backup and Recovery for a Data Warehouse?
	Strategies and Best Practices for Backup and Recovery
	Best Practice A: Use ARCHIVELOG Mode
	Is Downtime Acceptable?

	Best Practice B: Use RMAN
	Best Practice C: Use Read-Only Tablespaces
	Best Practice D: Plan for NOLOGGING Operations
	Extraction, Transformation, and Loading
	The ETL Strategy and NOLOGGING Operations
	Sizing the Block Change Tracking File

	Incremental Backup
	The Incremental Approach

	Best Practice E: Not All Tablespaces Are Equally Important

	12 Securing a Data Warehouse
	Overview of Data Warehouse Security
	Why Is Security Necessary for a Data Warehouse?

	Using Roles and Privileges for Data Warehouse Security
	Using a Virtual Private Database in Data Warehouses
	How a Virtual Private Database Works

	Overview of Oracle Label Security
	How Oracle Label Security Works
	How Data Warehouses Benefit from Labels

	Overview of Fine-Grained Auditing in Data Warehouses
	Overview of Transparent Data Encryption in Data Warehouses

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

